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Abstract — The boundary-value problem for a singularly perturbed parabolic PDE
with convection is considered on an interval in the case of the singularly perturbed
Robin boundary condition; the highest space derivatives in the equation and in the
boundary condition are multiplied by the perturbation parameter ε. In contrast to the
Dirichlet boundary-value problem, for the problem under consideration the errors of
the well-known classical methods, generally speaking, grow without bound as ε ¿ N−1

where N defines the number of mesh points with respect to x. The order of convergence
for the known ε-uniformly convergent schemes does not exceed 1. In this paper, using
a defect correction technique, we construct ε-uniformly convergent schemes of high-
order time-accuracy. The efficiency of the new defect-correction schemes is confirmed
by numerical experiments. A new original technigue for experimental studying of
convergence orders is developed for the cases where the orders of convergence in the
x-direction and in the t-direction can be substantially different.
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1. Introduction

In this paper we consider the boundary-value problem on an interval for a singularly per-
turbed parabolic PDE with convection in the case of the singularly perturbed Robin bound-
ary condition. The Robin condition is given on the inflow and outflow boundary. The
highest space derivative in the equation and the derivatives in the boundary condition are

1 This research was supported in part by the Dutch Research Organization NWO (grant No. 047.008.007)
and by the Russian Foundation for Basic Research (grant No. 01-01-01022).
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multiplied by an arbitrarily small parameter ε. When the perturbation parameter ε tends to
zero, the solution of such a problem typically exhibits a boundary layer in a neighborhood
of the outflow boundary. This gives rise to difficulties when classical discretization methods
are applied, because the errors in the approximate solution mainly depend on the value of
ε: the errors of standard methods can even exceed many times the solution itself for small
values of the parameter ε. Moreover, in contrast to Dirichlet conditions (errors for Dirich-
let’s problem are ε-uniformly bounded), in the case of Neumann conditions as the special
case of the Robin condition the errors of discrete solutions grow without bound as ε tends
to zero (see, for example, the remark to Theorem 6.1 in Section 3). Thus, in connection
with such a behavior of the errors for standard numerical methods applied to the problem
in question with the Robin boundary condition, it is of interest to develop special numerical
methods whose errors are independent of the parameter ε and depend only on the number
of mesh points, i.e., ε-uniformly convergent methods. Such methods have been proposed
in the literature for a number of boundary-value problems for singularly perturbed ellip-
tic and parabolic equations with Dirichlet conditions (see, for example, [1–7] and also the
bibliography therein). It should be noted that the rate of ε-uniform convergence of known
special schemes for parabolic equations with convection terms is O(N−1 ln N + K−1), i.e.,
it is of the order not exceeding one, where N and K define the number of nodes in the grids
with respect to x and t. However, the well-known classical difference methods of high-order
accuracy with respect to x and/or t for the same problems (see, for example, [8], [9] and
also the bibliography therein), generally speaking, do not converge ε-uniformly. Thus, it is
necessary to construct ε-uniformly convergent schemes of high-order accuracy with respect
to x and/or t for a class of singularly perturbed convection-diffusion problems, including the
case of singularly perturbed Robin boundary conditions. Besides, a higher order accuracy
in time can considerably reduce computational expenses.

Defect correction techniques proved to be efficient for constructing ε-uniformly convergent
schemes of high-order accuracy with respect to t in the case of singularly perturbed reaction-
diffusion problems (see, for example, [10–12]). Therefore, this method seems attractive to
be used for the new class of singular perturbation problems under consideration.

In the present paper, ε-uniformly convergent schemes of high-order accuracy in time are
constructed, also based on the defect correction principle, for a singularly perturbed parabolic
convection-diffusion equation with the singularly perturbed Robin boundary condition. Note
that the Robin condition admits both the Dirichlet condition and the singularly perturbed
Neumann condition.

Theoretical investigations, as a rule, make it possible to evaluate only asymptotic or-
ders of ε-uniform convergence for anew constructed schemes. However, actual errors of
the constructed schemes can be significantly large for these schemes to be of practical use.
Therefore, experimental study of both errors and convergence orders would be an interesting
and important adjunct to the construction of special ε-uniform schemes. It should also be
noted that, for high-order time-accurate schemes, errors due to the discretization of the space
derivatives can be considerably greater than errors due to the time discretization (by a few
orders; see, for example, Section 7). This behavior of the errors leads to difficulties in the
experimental study of orders of ε-uniform convergence. For such cases, in the present paper
we apply the original technique which has been first developed by the authors in [13]. Using
this elegant technique, we give a sufficiently accurate analysis of the errors in the numerical
solutions and of the convergence orders, which convincingly verifies the theoretical results.
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2. The studied class of initial boundary-value problems

On the domain G = D × (0, T ], D = (0, 1) with the boundary S = G \ G we consider the
following singularly perturbed parabolic equation with Robin boundary conditions 2 :

L(2.1)u(x, t) ≡
{

ε a(x, t)
∂2

∂x2 + b(x, t)
∂

∂x
− c(x, t)− p(x, t)

∂

∂t

}
u(x, t) = f(x, t),

(x, t) ∈ G, (2.1a)

l(2.1)u(x, t) ≡
{

ε α(x, t)
∂

∂n
+ β(x, t)

}
u(x, t) = ψ(x, t), (x, t) ∈ SL, (2.1b)

u(x, t) = ϕ(x), (x, t) ∈ S0. (2.1c)

For S = S0 ∪ SL, we distinguish the lateral boundary SL = {(x, t) : x = 0 or x = 1,
0 < t 6 T} and the initial boundary S0 = {(x, t) : x ∈ [0, 1], t = 0}; here ∂/∂n is the
derivative in the direction of the outward normal to SL. In (2.1) a(x, t), b(x, t), c(x, t),
p(x, t), f(x, t), (x, t) ∈ G, α(x, t), β(x, t), ψ(x, t), (x, t) ∈ SL, and ϕ(x), x ∈ D are
sufficiently smooth and bounded functions which satisfy

0<a0 6 a(x, t), 0<b0 6 b(x, t), 0<p0 6 p(x, t), c(x, t)>0, (x, t)∈G,

α(x, t), β(x, t) > 0, α(x, t) + β(x, t) > α0 > 0, (x, t) ∈ SL.
(2.1d)

The real parameter ε in (2.1a) and (2.1b) may take any values from the half-open unit
interval

ε ∈ (0, 1]. (2.1e)

When the parameter ε tends to zero, the solution exhibits a layer in the neighborhood
of the outflow boundary SL

1 = {(x, t) : x = 0, 0 6 t 6 T}, i.e., the left side of the lateral
boundary. This layer is described by an ordinary differential equation (an ordinary boundary
layer).

We have the Dirichlet problem if α(x, t) ≡ 0, (x, t) ∈ SL, and the Neumann problem if
β(x, t) ≡ 0, (x, t) ∈ SL. For simplicity, we assume that the following conditions are satisfied
on the inflow (SL

2 ) and outflow boundaries 3 :

β(x, t) > m, (x, t) ∈ SL
2 , and

{
or α(x, t) = 0

or α(x, t) > m

}
, (x, t) ∈ SL

k , k = 1, 2; (2.2)

β can equal zero on SL
1 .

3. Difference scheme on an arbitrary mesh

To solve problem (2.1) we first consider a classical finite difference method. On the set G
we introduce the rectangular mesh

Gh = ω × ω0, (3.1)

2 The notation is such that the operator L(a.b) is first introduced in equation (a.b).
3 Here and below we denote by M (or m) sufficiently large (or small) positive constants which do not

depend on the value of the parameter ε and on the discretization parameters.
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where ω is the (possibly) nonuniform mesh of nodal points, xi, in [0, 1], ω0 is a uniform
mesh on the interval [0, T ]; N and K are the numbers of intervals in the meshes ω and ω0,
respectively. We define τ = T/K, hi = xi+1 − xi, h = maxi h

i, h 6 M/N , Gh = G ∩ Gh,
Sh = S ∩Gh.

For problem (2.1) we use the difference scheme [8]

Λ(3.2)z(x, t) = f(x, t), (x, t) ∈ Gh, (3.2a)

λ(3.2)z(x, t) = ψ(x, t), (x, t) ∈ SL
h , (3.2b)

z(x, t) = ϕ(x), (x, t) ∈ S0h. (3.2c)

Here

Λ(3.2)z(x, t) ≡ {
ε a(x, t)δxbx + b(x, t)δx − c(x, t)− p(x, t)δt

}
z(x, t), (x, t) ∈ Gh,

λ(3.2)z(x, t) ≡ ε α(x, t)

{ −δxz(x, t), (x, t) ∈ SL
1h,

δxz(x, t), (x, t) ∈ SL
2h

}
+ β(x, t)z(x, t), (x, t) ∈ SL

h ,

δxbxz(xi, t) = 2
(
hi−1 + hi

)−1 (
δxz(xi, t)− δxz(xi, t)

)
,

δxz(xi, t) =
(
hi−1

)−1 (
z(xi, t)− z(xi−1, t)

)
,

δxz(xi, t) =
(
hi

)−1 (
z(xi+1, t)− z(xi, t)

)
,

δtz(xi, t) = τ−1
(
z(xi, t)− z(xi, t− τ)

)
,

δxz(x, t) and δxz(x, t), δtz(x, t) are the forward and backward differences, and the difference

operator δxbxz(x, t) is an approximation of the operator ∂2

∂x2u(x, t) on the nonuniform mesh.

From [8] we know that the difference scheme (3.2), (3.1) is monotone. By means of
the maximum principle and taking into account a priori estimates of the derivatives (see
Theorem 8.1 in Section 8) we find that the solution of the difference scheme (3.2), (3.1)
converges for a fixed value of the parameter ε:

|u(x, t)− z(x, t) | 6 M
(
ε−2N−1 + τ

)
, (x, t) ∈ Gh. (3.3)

This error bound for the classical difference scheme is clearly not ε-uniform.
The proof of (3.3) follows the lines of the classical convergence proof for monotone dif-

ference schemes (see [2, 8]). This results in the following theorem.

Theorem 3.1. Assume in equation (2.1) that

a ∈ H(ϑ+2n−1)(G); b, c, p, f ∈ H (ϑ+2n−2)(G);

ϕ ∈ H (ϑ+2n)(D); α, β, ψ ∈ H (ϑ+2n)(S
L
); ϑ > 4, n = 0,

and let conditions (2.2) and also the compatibility conditions (8.1) with n = 0 be satisfied.
Then, for a fixed value of the parameter ε, the solution of (3.2), (3.1) converges to the
solution of (2.1) with an error bound given by (3.3).

Remark 3.1. The consideration of model examples shows that on uniform meshes
the error of the mesh solution grows without bound similarly to ε−1N−1 for ε ¿ N−1 if
β(x, t) = 0, (x, t) ∈ S0L

1 (that is, in the case of the Neumann condition given on the set S0
1)

where S0L
1 is a subset of the set SL

1 .
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4. The ε-uniformly convergent scheme

Here we discuss an ε-uniformly convergent method for (2.1) by taking a special mesh con-
densed in the neighborhood of the boundary layer. The location of the nodes is determined
properly from the a priori estimates of the solution and its derivatives. The way to construct
the mesh for problem (2.1) is the same as in [10,11,14]. More specifically, we take

G
∗

h = ω ∗(σ)× ω0 , (4.1)

where ω0 is the uniform mesh with the step size τ = T/K, i.e., ω0 = ω0(3.1), and ω ∗ = ω ∗(σ)
is a special piecewise uniform mesh depending on the parameter σ ∈ IR, which depends on
ε and N . We take

σ = σ(4.1)(ε, N) = min
{

1/2, m−1ε ln N
}

,

where m is an arbitrary number from the interval (0,m0), m0 = minG [a−1(x, t) b(x, t)]. The
mesh ω ∗(σ) is constructed as follows. The interval [0, 1] is divided in two parts [0, σ], [σ, 1],
σ 6 1/2 . In each part we use a uniform mesh, with N/2 subintervals in [ 0, σ ] and [ σ, 1 ].

Theorem 4.1. Let the hypotheses of Theorem 3.1 be fulfilled. Then the solution of (3.2),
(4.1) converges ε-uniformly to the solution of (2.1) and the following estimate holds:

| u(x, t)− z(x, t) | 6 M
(
N−1 ln N + τ

)
, (x, t) ∈ G

∗
h. (4.2)

The proof of this theorem can be found in [2,15].

5. Numerical results for scheme (3.2), (4.1)

To see the effect of the special mesh in practice, we take the model problem

L(5.1)u(x, t) ≡
{

ε
∂2

∂x2
+

∂

∂x
− ∂

∂t

}
u(x, t) = f(x, t), (x, t) ∈ G, (5.1)

l(5.1)u(x, t) ≡
{
−ε ∂

∂x
u(x, t), (x, t) ∈ SL

1 ,

u(x, t), (x, t) ∈ SL
2

}
= ψ(x, t), (x, t) ∈ SL,

u(x, t) = ϕ(x), (x, t) ∈ S0,

where f(x, t) = −4t3, (x, t) ∈ G, ψ(0, t) = t2, ψ(1, t) = 0, t ∈ [0, T ], T = 1; ϕ(x) = 0,
x ∈ D.

For the approximation of problem (5.1) we use the scheme (3.2), (4.1), where m = 2−1,
Gh = G

∗
h .

Since the exact solution for this problem is unknown, we replace it by the numerical
solution U4096

ε (x, t) computed on the finest available mesh Gh with N = K = 4096 for each
value of ε. Then the computed maximum pointwise error is defined by

E(N, K, ε) = max
(x,t)∈Gh

| z(x, t)− u∗(x, t) | . (5.2)

Here u∗(x, t) is the linear interpolation obtained from the reference numerical solution
U4096

ε (x, t) of problem (3.2), (4.1). We compute E(N,K, ε) for various values of ε, N, K.
Note that no special interpolation is needed along the t-axis.
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The results are given in Table 1. From the analysis of these numerical results we conclude
that, in accordance with (4.2), the order of convergence for large N = K is O(N−1 ln N +
K−1), i.e., almost one with respect to the space and time variables, which corresponds to
the theoretical results.

Table 1. Errors E(N = K, ε) for the model problem (5.1) solved by the special scheme (3.2), (4.1)

ε \ N 8 16 32 64 128 256 512 1024 2048
1.0 9.356-2 5.266-2 2.774-2 1.414-2 7.052-3 3.435-3 1.608-3 6.904-4 2.303-4
2−1 2.447-1 1.293-1 6.616-2 3.324-2 1.646-2 7.989-3 3.734-3 1.602-3 5.341-4
2−2 5.048-1 2.584-1 1.302-1 6.491-2 3.202-2 1.551-2 7.244-3 3.106-3 1.035-3
2−3 9.973-1 5.027-1 2.514-1 1.250-1 6.154-2 2.979-2 1.390-2 5.959-3 1.987-3
2−4 1.984+0 9.945-1 4.961-1 2.463-1 1.212-1 5.867-2 2.738-2 1.173-2 3.912-3
2−5 2.172+0 1.409+0 8.643-1 4.916-1 2.419-1 1.171-1 5.464-2 2.342-2 7.806-3
2−6 2.240+0 1.448+0 8.821-1 5.174-1 2.931-1 1.598-1 8.261-2 3.875-2 1.420-2
2−7 2.283+0 1.476+0 8.965-1 5.248-1 2.969-1 1.616-1 8.326-2 3.873-2 1.380-2
2−8 2.307+0 1.493+0 9.049-1 5.291-1 2.993-1 1.629-1 8.391-2 3.904-2 1.391-2
2−9 2.320+0 1.502+0 9.095-1 5.314-1 3.005-1 1.636-1 8.426-2 3.920-2 1.397-2
2−10 2.326+0 1.507+0 9.119-1 5.326-1 3.011-1 1.639-1 8.443-2 3.928-2 1.399-2
2−12 2.331+0 1.511+0 9.137-1 5.335-1 3.016-1 1.642-1 8.457-2 3.934-2 1.402-2
2−14 2.332+0 1.512+0 9.142-1 5.338-1 3.018-1 1.642-1 8.460-2 3.936-2 1.402-2
2−16 2.333+0 1.512+0 9.143-1 5.338-1 3.018-1 1.642-1 8.461-2 3.936-2 1.402-2
E(N) 2.333+0 1.512+0 9.143-1 5.338-1 3.018-1 1.642-1 8.461-2 3.936-2 1.402-2

In this table the function E(N, K, ε) is defined by (5.2). Here K = N . In the bottom line E(N)
gives the computed maximum pointwise errors for each column.

6. Improved time-accuracy

6.1. A scheme based on defect correction

In this section we construct a new discrete method based on defect correction, which also
converges ε-uniformly to the solution of the boundary-value problem, but with an order of
accuracy (with respect to τ) higher than in (4.2).

The technique used in this paper to improve time-accuracy is based on that from [10,11].
For the difference scheme (3.2), (4.1) the error in the approximation of the partial deriva-
tive (∂/∂t) u(x, t) is caused by the divided difference δt z(x, t) and is associated with the
truncation error given by

∂u

∂t
(x, t)− δt u(x, t)=2−1 τ

∂2u

∂t2
(x, t)− 6−1 τ 2∂3u

∂t3
(x, t− θ), θ ∈ [0, τ ]. (6.1)

Therefore, for the approximation of (∂/∂t) u(x, t) we now use the expression

δt u(x, t) + τδt t u(x, t)/2, where δt t u(x, t) ≡ δt t u(x, t− τ).

Notice that δt t u(x, t) is the second central divided difference. We can evaluate a better
approximation than (3.2a) by defect correction

Λ(3.2)z
c(x, t) = f(x, t) + 2−1p(x, t)τ

∂2u

∂t2
(x, t), (6.2)
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with x ∈ ω and t ∈ ω0, where ω and ω0 are as in (3.1); τ is the step size of the mesh ω0;
zc(x, t) is the “corrected” solution. Instead of (∂2/∂t2) u(x, t) we shall use δt t z(x, t), where
z(x, t), (x, t) ∈ Gh(4.1) is the solution of the difference scheme (3.2), (4.1). We may expect
that the new solution zc(x, t) has a consistency error O(τ 2). This is true, as will be shown
in Section 6.2.

Moreover, in a similar way we can construct a difference approximation with a conver-
gence order higher than two (with respect to the time variable) and O(N−1 ln N) with
respect to the space variable ε-uniformly.

6.2. The defect correction scheme of second-order accuracy in time

We denote by δktz(x, t) the backward difference of order k:

δkt z(x, t) = (δk−1 t z(x, t)− δk−1 t z(x, t− τ)) /τ, t > kτ, k > 1;

δ0t z(x, t) = z(x, t), (x, t) ∈ Gh.

To construct the difference schemes of second-order accuracy in τ in (6.2), instead of
(∂2/∂t2)u(x, t) we use δ2 t z(x, t), the second divided difference of the solution to the discrete
problem (3.2), (4.1). On the mesh Gh we write the finite difference scheme (3.2) in the form

Λ(3.2)z
(1)(x, t) = f(x, t), (x, t) ∈ Gh, (6.3)

λ(3.2)z
(1)(x, t) = ψ(x, t), (x, t) ∈ SL

h ,

z(1)(x, t) = ϕ(x), (x, t) ∈ S0h,

where z(1)(x, t) is the uncorrected solution.
For the corrected solution z(2)(x, t) we solve the problem for (x, t) ∈ Gh

Λ(3.2)z
(2)(x, t) = f(x, t) +





p(x, t)2−1 τ ∂2

∂t2
u(x, 0), t = τ,

p(x, t)2−1 τδ2 t z
(1)(x, t), t > 2τ





, (x, t) ∈ Gh,

λ(3.2)z
(2)(x, t) = ψ(x, t), (x, t) ∈ SL

h , (6.4)

z(2)(x, t) = ϕ(x), (x, t) ∈ S0h.

Here the derivative ∂2u
∂t2

(x, 0) can be obtained from equation (2.1a). We shall call z(2)(x, t)

the solution of difference scheme (6.4), (6.3), (4.1) (or shortly, (6.4), (4.1)).
For simplicity, in the remainder of this section we suppose that the coefficients a(x, t),

b(x, t) do not depend on t:

a(x, t) = a(x), b(x, t) = b(x), (x, t) ∈ G, (6.5)

and we take a homogeneous initial condition

ϕ(x) = 0, x ∈ D. (6.6)

Under conditions (6.5), (6.6), the following estimate holds for the solution of problem
(6.4), (4.1):

∣∣ u(x, t)− z (2)(x, t)
∣∣ 6 M

[
N−1 ln N + τ 2

]
, (x, t) ∈ Gh. (6.7)
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Theorem 6.1. Let conditions (6.5), (6.6) hold and assume in equation (2.1) that a, b,

c, p, f ∈ H (ϑ+2n−2)(G), ϕ ∈ H (ϑ+2n)(D), α, β, ψ ∈ H (ϑ+2n)(S
L
), ϑ > 4, n = 1, and let

conditions (2.2) and also the compatibility conditions (8.1) for n = 1 be satisfied. Then for
the solution of difference scheme (6.4), (4.1) estimate (6.7) is valid.

Proof. The proof of Theorem 6.1 is given in Section 9.2.

Remark 6.1. The conclusion of Theorem 6.1 remains also valid in cases where the
coefficients a and b depend on x, t, for example, where the condition a−1(x, t) b(x, t) = g(x),
(x, t) ∈ G is satisfied. This remark holds for Theorem 6.2 as well.

6.3. The defect correction scheme of third-order accuracy in time

The above procedure can be used to obtain an arbitrarily large order of accuracy in time.
Here we only show how to construct the difference scheme of third-order accuracy. On the
grid Gh we consider the difference scheme

Λ(3.2) z(3)(x, t) = f(x, t) + (6.8a)

+





p(x, t)
(
C11τ

∂2

∂t2
u(x, 0) + C12τ

2 ∂3

∂t3
u(x, 0)

)
, t = τ,

p(x, t)
(
C21τ

∂2

∂t2
u(x, 0) + C22τ

2 ∂3

∂t3
u(x, 0)

)
, t = 2τ,

p(x, t)
(
C31τδ2 tz

(2)(x, t) + C32τ
2δ3 tz

(1)(x, t)
)
, t > 3τ





, (x, t) ∈ Gh,

λ(3.2)z
(3)(x, t) = ψ(x, t), (x, t) ∈ SL

h ,

z(3)(x, t) = ϕ(x, t), (x, t) ∈ S0h.

Here z(1)(x, t) and z(2)(x, t) are the solutions of problems (6.3), (4.1) and (6.4), (4.1), re-
spectively; the derivatives (∂2/∂t2)u(x, 0), (∂3/∂t3)u(x, 0) are again obtained from equation
(2.1a). The coefficients Cij are chosen such that they satisfy the following conditions:

∂

∂t
u(x, t) = δtu(x, t) + C11τ

∂2

∂t2
u(x, t− τ) + C12τ

2 ∂3

∂t3
u(x, t− τ) +O(τ 3),

∂

∂t
u(x, t) = δtu(x, t) + C21τ

∂2

∂t2
u(x, t− 2τ) + C22τ

2 ∂3

∂t3
u(x, t− 2τ) +O(τ 3),

∂

∂t
u(x, t) = δtu(x, t) + C31τδ2 tu(x, t) + C32τ

2δ3 tu(x, t) +O(τ 3).

It follows that

C11 = C21 = C31 = 1/2, C12 = C32 = 1/3, C22 = 5/6. (6.8b)

By z(3)(x, t) we denote the solution of the difference scheme (6.8), (4.1) and again, for
simplicity, we assume the homogeneous initial condition to take place:

ϕ(x) = 0, f(x, 0) = 0, x ∈ D. (6.9)
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Under conditions (6.5), (6.9) the following estimate holds for the solution of difference
scheme (6.8), (4.1):

∣∣u(x, t)− z(3)(x, t)
∣∣ 6 M

[
N−1 ln N + τ 3

]
, (x, t) ∈ Gh. (6.10)

Theorem 6.2. Let conditions (6.9) hold and assume in equation (2.1) that a, b, c, p, f ∈
H (ϑ+2n−2)(G), ϕ ∈ H (ϑ+2n)(D), α, β, ψ ∈ H (ϑ+2n)(S

L
), ϑ > 4, n = 2, and let conditions

(2.2) and also the compatibility conditions (8.1) with n = 2 be satisfied. Then for the solution
of scheme (6.8), (4.1) the estimate (6.10) is valid.

Proof. The proof of Theorem 6.2 is given in Section 9.2.

In a similar way we could construct difference schemes with an arbitrarily high order of
accuracy

O(N−1 ln N + τn+1), n > 2.

7. Numerical results for the time-accurate schemes

We find the solution of the following boundary-value problem:

L(5.1)u(x, t) = 0, 0 < x < 1, 0 < t 6 T, T = 1. (7.1)

l(5.1)u(x, t) =

{
t5, x = 0,

0, x = 1

}
, (x, t) ∈ SL,

u(x, t) = 0, (x, t) ∈ S0.

It should be noted that the solution of this problem is singular.
It is very attractive to use the analytical solution of problem (7.1) for the computation

of errors in the approximate solution, as was done in [10, 11]. But here the suitable (for
computation) representation of the solution u(x, t) is unknown. Instead of the exact solution,
it is possible to use the solution of the discrete problem on a very fine mesh. But this method
is not effective because the analysis of the order of accuracy for a defect-correction scheme
requires a very dense mesh that leads not only to large computational expenses but also to
large round-off errors.

Here we use the method from [16], different from the above-mentioned techniques. The
solution of problem (7.1) is represented in the form of the sum

u(x, t) = V (1)(x, t) + v(x, t), (x, t) ∈ G, (7.2)

where V (1)(x, t) is the main singular part (two first terms) of the asymptotic expansion of
the solution u(x, t), and v(x, t) is the remainder term, which is a sufficiently small smooth
function. The function V (1)(x, t) has a sufficiently simple analytical representation

V (1)(x, t) = t4[t− 5x− 5ε] exp(−ε−1 x),
∣∣V (1)(x, t)

∣∣ 6 M, (x, t) ∈ G.

The function v(x, t) is the solution of the problem

L(5.1)v(x, t) = f0(x, t), (x, t) ∈ G, (7.3)

−ε
∂

∂x
v(0, t) = 0, v(1, t) = −V (1)(1, t), 0 < t 6 T, v(x, 0) = 0, 0 < x < 1.
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Here
f0(x, t) = −20 t3 (x + ε) exp(−ε−1 x).

For the function v(x, t) the following estimate holds:

∣∣∣∣
∂k+k0

∂xk∂tk0
v(x, t)

∣∣∣∣ 6 Mε2[1 + ε−k], (x, t) ∈ G, k + 2k0 6 4, k 6 3. (7.4)

Table 2. Errors E(N, K) for ε = 2−10

K \N 4 8 16 32 64 128 256 512 1024

z(1)

4 2.56+0 2.12+0 1.41+0 8.74-1 5.22-1 3.04-1 1.75-1 9.91-2 5.59-2
8 2.43+0 2.07+0 1.40+0 8.71-1 5.20-1 3.03-1 1.74-1 9.82-2 5.50-2

16 2.36+0 2.05+0 1.40+0 8.70-1 5.19-1 3.03-1 1.73-1 9.76-2 5.45-2
32 2.33+0 2.03+0 1.40+0 8.69-1 5.19-1 3.02-1 1.73-1 9.73-2 5.42-2
64 2.31+0 2.03+0 1.39+0 8.68-1 5.19-1 3.02-1 1.73-1 9.72-2 5.40-2

128 2.30+0 2.02+0 1.39+0 8.68-1 5.19-1 3.02-1 1.73-1 9.71-2 5.40-2
256 2.30+0 2.02+0 1.39+0 8.68-1 5.19-1 3.02-1 1.73-1 9.70-2 5.39-2
512 2.29+0 2.02+0 1.39+0 8.68-1 5.19-1 3.02-1 1.73-1 9.70-2 5.39-2

1024 2.29+0 2.02+0 1.39+0 8.68-1 5.19-1 3.02-1 1.72-1 9.70-2 5.39-2

z(2)

4 2.37+0 2.05+0 1.40+0 8.70-1 5.20-1 3.03-1 1.73-1 9.79-2 5.47-2
8 2.31+0 2.03+0 1.40+0 8.69-1 5.19-1 3.02-1 1.73-1 9.73-2 5.42-2

16 2.30+0 2.02+0 1.39+0 8.68-1 5.19-1 3.02-1 1.73-1 9.71-2 5.40-2
32 2.29+0 2.02+0 1.39+0 8.68-1 5.19-1 3.02-1 1.72-1 9.70-2 5.39-2
64 2.29+0 2.02+0 1.39+0 8.68-1 5.18-1 3.02-1 1.72-1 9.70-2 5.39-2

128 2.29+0 2.02+0 1.39+0 8.68-1 5.18-1 3.02-1 1.72-1 9.70-2 5.39-2
256 2.29+0 2.02+0 1.39+0 8.68-1 5.18-1 3.02-1 1.72-1 9.70-2 5.39-2
512 2.29+0 2.02+0 1.39+0 8.68-1 5.18-1 3.02-1 1.72-1 9.70-2 5.39-2

1024 2.29+0 2.02+0 1.39+0 8.68-1 5.18-1 3.02-1 1.72-1 9.70-2 5.39-2

z(3)

4 2.33+0 2.03+0 1.40+0 8.69-1 5.19-1 3.02-1 1.73-1 9.74-2 5.42-2
8 2.30+0 2.02+0 1.39+0 8.68-1 5.19-1 3.02-1 1.73-1 9.71-2 5.39-2

16 2.29+0 2.02+0 1.39+0 8.68-1 5.18-1 3.02-1 1.72-1 9.70-2 5.39-2
32 2.29+0 2.02+0 1.39+0 8.68-1 5.18-1 3.02-1 1.72-1 9.70-2 5.39-2
64 2.29+0 2.02+0 1.39+0 8.68-1 5.18-1 3.02-1 1.72-1 9.70-2 5.39-2

128 2.29+0 2.02+0 1.39+0 8.68-1 5.18-1 3.02-1 1.72-1 9.70-2 5.39-2
256 2.29+0 2.02+0 1.39+0 8.68-1 5.18-1 3.02-1 1.72-1 9.70-2 5.39-2
512 2.29+0 2.02+0 1.39+0 8.68-1 5.18-1 3.02-1 1.72-1 9.70-2 5.39-2

1024 2.29+0 2.02+0 1.39+0 8.68-1 5.18-1 3.02-1 1.72-1 9.70-2 5.39-2

Then the function v(x, t) and the product ε(∂3/∂x3) v(x, t) are ε-uniformly bounded.
Thus, we can consider v(x, t) as the regular part of this solution and, moreover, v(x, t) is of
order O(ε2), according to (7.4).

(1.) For the chosen value of ε, we solve the discrete problem approximating the model
problem (7.3) on the finest available mesh Gh = G

∗
h(4.1) for N = K = 2048, and there are
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no difficulties to find the function v(x, t) = v2048
ε (x, t) and the reference solution u(7.2)(x, t)

which can be practically taken as the exact solution

u(7.2)(x, t) = u2048
ε (x, t) = V (1)(x, t) + v2048

ε (x, t).

(2.) Further for solving problem (7.1), we consecutively use scheme (6.3), (4.1) and
the defect correction schemes (6.4), (4.1) and (6.8), (4.1) to find the functions z(1)(x, t),
z(2)(x, t), and z(3)(x, t), respectively. Note that z(1)(x, t) is the uncorrected solution, z(2)(x, t)
and z(3)(x, t) are the corrected solutions. In these cases we compute the maximum pointwise
errors E(N,K, ε) by formula (5.2), where u∗(x, t) is the linear interpolation obtained from
the reference solution u2048

ε (x, t) corresponding to the numerical solution z(k)(x, t), k = 1, 2, 3
for the values N = 2i, i = 2, 3, . . . , 10, K = 2j, j = 2, 3, . . . , 10.

Table 3. Space errors E(s)(N, K) for ε = 2−10

K \ N 8 16 32 64 128 256 512

z(1)

4 7.01-1 5.41-1 3.52-1 2.17-1 1.30-1 7.56-2 4.32-2
8 6.66-1 5.34-1 3.51-1 2.17-1 1.30-1 7.56-2 4.32-2

16 6.46-1 5.29-1 3.50-1 2.17-1 1.30-1 7.55-2 4.31-2
32 6.36-1 5.27-1 3.50-1 2.17-1 1.30-1 7.55-2 4.31-2
64 6.31-1 5.26-1 3.50-1 2.17-1 1.30-1 7.55-2 4.31-2

128 6.29-1 5.25-1 3.50-1 2.17-1 1.30-1 7.55-2 4.31-2
256 6.27-1 5.25-1 3.49-1 2.17-1 1.29-1 7.55-2 4.31-2
512 6.27-1 5.25-1 3.49-1 2.17-1 1.29-1 7.55-2 4.31-2

1024 6.26-1 5.25-1 3.49-1 2.17-1 1.29-1 7.55-2 4.31-2

z(2)

4 6.52-1 5.31-1 3.51-1 2.17-1 1.30-1 7.55-2 4.32-2
8 6.34-1 5.27-1 3.50-1 2.17-1 1.30-1 7.55-2 4.31-2

16 6.28-1 5.25-1 3.50-1 2.17-1 1.30-1 7.55-2 4.31-2
32 6.27-1 5.25-1 3.49-1 2.17-1 1.29-1 7.55-2 4.31-2
64 6.26-1 5.25-1 3.49-1 2.17-1 1.29-1 7.55-2 4.31-2
. . . . . . . . . . . . . . . . . . . . . . . .

1024 6.26-1 5.25-1 3.49-1 2.17-1 1.29-1 7.55-2 4.31-2

z(3)

4 6.37-1 5.28-1 3.50-1 2.17-1 1.30-1 7.55-2 4.31-2
8 6.28-1 5.25-1 3.49-1 2.17-1 1.29-1 7.55-2 4.31-2

16 6.26-1 5.25-1 3.49-1 2.17-1 1.29-1 7.55-2 4.31-2
. . . . . . . . . . . . . . . . . . . . . . . .

1024 6.26-1 5.25-1 3.49-1 2.17-1 1.29-1 7.55-2 4.31-2

The computational process (1.) and (2.) is repeated for all values of ε = 2−n, n =
0, 2, 4, . . . , 12. As a result, we get E(N, K, ε) for various values of ε, N , K for each of the
functions z(1)(x, t), z(2)(x, t), z(3)(x, t). Analyzing these results, we observe convergence of
the solutions for increasing N = K for any of the functions z(1)(x, t), z(2)(x, t), z(3)(x, t) and
for all values of ε used. In order to show this result we give Table 2 only for ε = 2−10. The
error tables for the other values of ε are similar.
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In Table 2 the values of E(N,K) are given separately for the functions z(1)(x, t), z(2)(x, t),
and z(3)(x, t). For each of them we see decreasing errors for N = K, i.e., we have ε-uniform
convergence. But the order of convergence, which we observe, is approximately equal to one
for all the functions. All errors corresponding to the same values of N , K but to different
z(k)(x, t) are similar.

We know that the error of approximation consists of two parts. One part is due to
the discretization of the space derivatives and the second is due to the time discretization.
We briefly call these components the space error and the time error. Since by the defect
correction we improve only the accuracy with respect to time, we expect a decreasing time
error. It can be much smaller than the space error and, therefore, the observed error in
Table 2 corresponds only to the space error. In order to show this fact, we split the combined
error into the space error (Table 3) and the time error (Table 5). The structure of Table 3
is similar to that of Table 2.

Table 4. Ratios of space errors R(s)(N, K) for ε = 2−10

K \ N 8 16 32 64 128 256

z(1)

4 1.30 1.54 1.62 1.67 1.72 1.75
8 1.25 1.52 1.62 1.67 1.72 1.75

16 1.22 1.51 1.62 1.67 1.72 1.75
32 1.21 1.51 1.61 1.67 1.72 1.75
64 1.20 1.50 1.61 1.67 1.72 1.75

128 1.20 1.50 1.61 1.67 1.72 1.75
256 1.19 1.50 1.61 1.67 1.72 1.75
512 1.19 1.50 1.61 1.67 1.72 1.75

1024 1.19 1.50 1.61 1.67 1.72 1.75

z(2)

4 1.23 1.52 1.62 1.67 1.72 1.75
8 1.20 1.51 1.61 1.67 1.72 1.75

16 1.20 1.50 1.61 1.67 1.72 1.75
32 1.19 1.50 1.61 1.67 1.72 1.75
. . . . . . . . . . . . . . . . . . . . .

1024 1.19 1.50 1.61 1.67 1.72 1.75

z(3)

4 1.21 1.51 1.62 1.67 1.72 1.75
8 1.20 1.50 1.61 1.67 1.72 1.75

16 1.19 1.50 1.61 1.67 1.72 1.75
. . . . . . . . . . . . . . . . . . . . .

1024 1.19 1.50 1.61 1.67 1.72 1.75

Table 3 contains the values of the space errrors computed from the formula

E(s)(Ni, K) = E(Ni, K)− E(Ni+1, K), i = 3, 4, . . . , 9, Ni = 2i.

We see that the errors are the same for all different K. The errors in Table 2 and Table 3
have the same order.
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From Table 3 we deduce Table 4, where the ratios of the space errors is given by

R(s)(Ni, K) = E(s)(Ni, K)/E(s)(Ni+1, K), i = 3, 4, . . . , 8.

In Table 4 we see the first order of the convergence with respect to the space variable
up to a small logarithmic factor.

In a similar way we construct Table 5 for the time errors

E(t)(N,Kj) = E(N, Kj)− E(N,Kj+1), j = 2, 3, . . . , 9

and Table 6 for their ratios

R(t)(N, Kj) = E(t)(N, Kj)/E
(t)(N,Kj+1), j = 2, 3, 4, . . . , 8, Kj = 2j.

At last, we now observe very interesting results in Table 5:

Table 5. Time errors E(t)(N, K) for ε = 2−10

K \ N 4 8 16 32 64 128 256 512 1024

z(1)

4 1.30-1 4.55-2 9.96-3 2.48-3 1.33-3 1.07-3 9.59-4 8.97-4 8.61-4
8 6.71-2 2.51-2 5.80-3 1.49-3 8.10-4 6.54-4 5.85-4 5.47-4 5.25-4

16 3.38-2 1.31-2 3.13-3 8.19-4 4.46-4 3.60-4 3.22-4 3.01-4 2.89-4
32 1.69-2 6.69-3 1.62-3 4.28-4 2.34-4 1.89-4 1.69-4 1.58-4 1.52-4
64 8.48-3 3.38-3 8.26-4 2.19-4 1.20-4 9.66-5 8.64-5 8.08-5 7.76-5

128 4.24-3 1.70-3 4.17-4 1.11-4 6.05-5 4.89-5 4.37-5 4.09-5 3.93-5
256 2.12-3 8.51-4 2.09-4 5.57-5 3.04-5 2.46-5 2.20-5 2.06-5 1.98-5
512 1.06-3 4.26-4 1.05-4 2.79-5 1.53-5 1.23-5 1.10-5 1.03-5 9.90-6

z(2)

4 5.89-2 2.47-2 6.16-3 1.65-3 9.07-4 7.32-4 6.55-4 6.13-4 5.88-4
8 1.67-2 7.50-3 1.97-3 5.34-4 2.92-4 2.36-4 2.11-4 1.97-4 1.90-4

16 4.42-3 2.06-3 5.53-4 1.50-4 8.22-5 6.64-5 5.94-5 5.55-5 5.33-5
32 1.14-3 5.40-4 1.47-4 3.99-5 2.18-5 1.76-5 1.57-5 1.47-5 1.41-5
64 2.88-4 1.38-4 3.77-5 1.03-5 5.60-6 4.51-6 4.04-6 3.78-6 3.63-6

128 7.25-5 3.50-5 9.57-6 2.60-6 1.42-6 1.14-6 1.02-6 9.57-7 9.19-7
256 1.82-5 8.79-6 2.41-6 6.55-7 3.57-7 2.88-7 2.58-7 2.41-7 2.31-7
512 4.55-6 2.20-6 6.04-7 1.64-7 8.96-8 7.23-8 6.46-8 6.04-8 5.81-8

z(3)

4 3.02-2 1.26-2 3.13-3 8.14-4 4.38-4 3.53-4 3.16-4 2.95-4 2.84-4
8 4.18-3 1.95-3 5.06-4 1.29-4 6.81-5 5.47-5 4.89-5 4.57-5 4.39-5

16 5.77-4 2.77-4 7.20-5 1.79-5 9.35-6 7.50-6 6.71-6 6.27-6 6.02-6
32 7.60-5 3.70-5 9.59-6 2.34-6 1.22-6 9.79-7 8.75-7 8.18-7 7.86-7
64 9.75-6 4.77-6 1.24-6 3.00-7 1.56-7 1.25-7 1.12-7 1.04-7 1.00-7

128 1.24-6 6.06-7 1.57-7 3.79-8 1.97-8 1.58-8 1.41-8 1.32-8 1.27-8
256 1.55-7 7.64-8 1.98-8 4.77-9 2.47-9 1.98-9 1.77-9 1.66-9 1.59-9
512 1.95-8 9.59-9 2.48-9 5.98-10 3.10-10 2.49-10 2.22-10 2.08-10 1.99-10

1. We see that the time error is considerably smaller than the space error. This explains
the fact that we could not see the effect of the time error in Table 2.
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2. The errors for z(1) are larger than those for z(2) and, in turn, the errors for z(2) are
larger than those for z(3).

3. We see that approximately the same error (≈ 10−6) is obtained for z(1) at K = 512, for
z(2) at K = 64, and for z(3) at K = 16. Because the computational work is proportional
to K, we conclude that the amount of work is reduced by the defect correction.

4. Table 6, which shows the ratios of the errors, in fact confirms the theoretical order of
convergence as derived in Section 6. From the theory, the solution z(1)(x, t) of problem
(6.3), (4.1) converges with the rate O(τ) (see estimate (4.2) and Theorem 4.1). The
solution z(2)(x, t) of problem (6.4), (4.1), where z(1)(x, t) is the solution of problem
(6.3), (4.1), converges with the rate O(τ 2) (see estimate (6.7) and Theorem 6.1). The
solution z(3)(x, t) of problem (6.8), (4.1), where z(2)(x, t) and z(1)(x, t) are the solutions
of problems (6.4), (4.1) and (6.3), (4.1), respectively, converges with the rate O(τ 3)
(see estimate (6.10) and Theorem 6.2). The corresponding reduction factors are easily
recognized in Table 6.

Table 6. Ratios of time errors R(t)(N, K) for ε = 2−10

K \ N 4 8 16 32 64 128 256 512 1024

z(1)

4 1.94 1.81 1.72 1.66 1.64 1.64 1.64 1.64 1.64
8 1.98 1.91 1.86 1.82 1.82 1.82 1.82 1.82 1.82

16 2.00 1.96 1.93 1.91 1.91 1.91 1.91 1.91 1.91
32 2.00 1.98 1.96 1.96 1.95 1.95 1.95 1.95 1.95
64 2.00 1.99 1.98 1.98 1.98 1.98 1.98 1.98 1.98

128 2.00 2.00 1.99 1.99 1.99 1.99 1.99 1.99 1.99
256 2.00 2.00 2.00 1.99 1.99 1.99 1.99 1.99 1.99

z(2)

4 3.53 3.29 3.14 3.10 3.10 3.10 3.10 3.10 3.10
8 3.78 3.64 3.55 3.55 3.55 3.56 3.56 3.56 3.56

16 3.89 3.82 3.77 3.77 3.78 3.78 3.78 3.78 3.78
32 3.95 3.91 3.89 3.89 3.89 3.89 3.89 3.89 3.89
64 3.97 3.95 3.94 3.94 3.94 3.95 3.95 3.95 3.95

128 3.99 3.98 3.97 3.97 3.97 3.97 3.97 3.97 3.97
256 3.99 3.99 3.99 3.99 3.99 3.99 3.99 3.99 3.99

z(3)

4 7.23 6.48 6.19 6.32 6.44 6.45 6.46 6.46 6.46
8 7.25 7.03 7.02 7.21 7.29 7.29 7.30 7.30 7.30

16 7.59 7.49 7.51 7.62 7.66 7.66 7.66 7.66 7.66
32 7.79 7.74 7.76 7.81 7.83 7.83 7.83 7.83 7.83
64 7.90 7.87 7.88 7.91 7.92 7.92 7.92 7.92 7.92

128 7.95 7.94 7.94 7.95 7.96 7.96 7.96 7.96 7.96
256 7.97 7.97 7.97 7.98 7.98 7.98 7.98 7.98 7.98
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8. A priori estimates of the solution and its derivatives

In this Section we rely on the a priori estimates for the solution of problem (2.1) on the
domain G = D× [0, T ], and its derivatives as derived for elliptic and parabolic equations in
[2, 14, 17].

We denote by H (ϑ)(G) = H ϑ,ϑ/2(G) the Hölder space, where ϑ is an arbitrary positive
number [18]. We suppose that the functions f(x, t) and ϕ(x), ψ(x, t) satisfy compatibility
conditions at the corner points, so that the solution of the boundary-value problem is smooth
for each fixed value of the parameter ε.

For simplicity, we assume that the following conditions hold at the end points of the
interval D and at the corner points S0 ∩ S1 :

∂k

∂xk ϕ(x) = 0, ∂k0

∂tk0
ψ(x, t) = 0, k + 2k0 6 [ ϑ ] + 2n,

∂k+k0

∂xk∂tk0
f(x, t) = 0, k + 2k0 6 [ ϑ ] + 2n− 2,

(8.1)

where [ ϑ ] is the integer part of a number ϑ , ϑ > 0 , n > 0 is an integer. We also suppose
that [ ϑ ] + 2n > 2.

Using interior a priori estimates and estimates up to the boundary for the regular func-
tion ũ(ξ, t) (see [18]), where ũ(ξ, t) = u(x(ξ), t), ξ = x/ε, we find for (x, t) ∈ G the estimate

∣∣∣∣
∂k+k0

∂xk ∂tk0
u(x, t)

∣∣∣∣ 6 M ε−k, k + 2k0 6 2n + 4, n > 0. (8.2)

This estimate holds, for example, for

u ∈ H (2n+4+ν)(G), ν > 0, (8.3)

where ν is some small number.
For example, (8.3) is guaranteed for the solution of (2.1) if the coefficients satisfy inclu-

sions a, c, p, f ∈ H (ϑ+2n−2)(G), ϕ ∈ H (ϑ+2n)(D), α, β, ψ ∈ H (ϑ+2n)(S
L
), ϑ > 4, n > 0 and

condition (8.1) is fulfilled.
In fact we need a more accurate estimate than (8.2). Therefore, we represent the solution

of the boundary-value problem (2.1) in the form of the sum

u(x, t) = U(x, t) + W (x, t), (x, t) ∈ G, (8.4)

where U(x, t) represents the regular part, and W (x, t) the singular part, i.e., the parabolic
boundary layer. The function U(x, t) is the smooth solution of equation (2.1a) satisfying
conditions (2.1c) for t = 0 and (2.1b) for x = 1. For example, under suitable assumptions
for the data of the problem, we can consider the solution of the boundary-value problem for
equation (2.1a) smoothly continued onto the domain G

∗
extended beyond of SL

1 (G
∗

is a
sufficiently large neighborhood of G beyond of SL

1 ). On the domain G the coefficients and
the initial value of the extended problem are the same as for (2.1). Then the function U(x, t)
is the restriction (on G) of the solution to the extended problem, and U ∈ H(2n+4+ν)(G),
ν > 0. The function W (x, t) is the solution of a boundary-value problem for the parabolic
equation

L(2.1) W (x, t) = 0, (x, t) ∈ G, (8.5)

l(2.1) W (x, t) = l
(
u(x, t)− U(x, t)

)
, (x, t) ∈ SL,

W (x, t) = u(x, t)− U(x, t) = 0, (x, t) ∈ S0.
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If (8.3) is true, then W ∈ H(2n+4+ν)(G). Now, for the functions U(x, t) and W (x, t) we derive
the estimates

∣∣∣∣
∂k+k0

∂xk ∂tk0
U(x, t)

∣∣∣∣ 6 M, (8.6)

∣∣∣∣
∂k+k0

∂xk ∂tk0
W (x, t)

∣∣∣∣ 6 M ε−k exp(−m(8.7)ε
−1r(x, γ) ), (8.7)

(x, t) ∈ G, k + 2k0 6 2n + 2,

where r(x, γ) is the distance between the point x ∈ [0, 1] and the set γ which is the endpoints
of the segment [0, 1], m(8.7) is a sufficiently small positive number. Estimates (8.6) and (8.7)
hold, for example, when

U, W ∈ H (2n+4+ν)(G), ν > 0. (8.8)

Inclusions (8.8) are guaranteed if a, c, p, f ∈ H (ϑ+2n−2)(G), ϕ ∈ H (ϑ+2n)(D), α, β, ψ ∈
H (ϑ+2n)(S

L
), ϑ > 4, n > 0 and condition (8.1) is fulfilled. We summarize these results in

the following theorem.

Theorem 8.1. Assume in equation (2.1) that

a, b, c, p, f ∈ H (ϑ+2n−2)(G), ϕ ∈ H (ϑ+2n)(D)

α, β, ψ ∈ H (ϑ+2n)(S
L
), ϑ > 4, n > 0

and let conditions (2.2), (8.1) be fulfilled. Then, for the solution u(x, t) of problem (2.1) and
for its components from the representation (8.4), it follows that u, U, W ∈ H (ϑ+2n)(G) and
that estimates (8.2), (8.6), (8.7) hold.

The proof of the theorem is similar to the proof in [2], where the equation

ε a(x, t)
∂2

∂x2
u(x, t) + b(x, t)

∂

∂x
u(x, t)− c(x, t)u(x, t)− p(x, t)

∂u

∂t
(x, t) = f(x, t)

was considered in the case of the Dirichlet boundary conditions.

9. The proof of Theorems 6.1 and 6.2

9.1. The proof of Theorem 6.1

Let us show that the function δt z(x, t), where z(x, t) = z(6.3)(x, t) is the solution of the
difference problem (6.3), approximates the function δt u(x, t) ε-uniformly. For simplicity we
assume a(x, t), b(x, t) and α(x, t) to be constant on G and SL. The function δt z(x, t) is the
solution of the difference problem

Λ(9.1) δt z(x, t) = f(9.1)(x, t), (x, t) ∈ G
[1]
h , (9.1a)

λ(9.1) δt z(x, t) = ψ(9.1)(x, t), (x, t) ∈ S
[ 1]L
h , (9.1b)

δt z(x, t) = ϕ(9.1)(x, t), (x, t) ∈ S
[ 1]
0h . (9.1c)
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Here G
[k]

h = Gh ∩ {t > kτ}, G
[k]
h = Gh ∩ {t > kτ}, S

[k]
h = G

[k]

h \G
[k]
h ,

S
[k]
h = S

[k]
0h ∪ S

[k]L
h , S

[k]
0h = Gh ∩ {t > kτ} , k > 1,

Λ(9.1)δtz(x, t) ≡ { ε aδxbx + bδx − č(x, t)− pt(x, t)− p̌(x, t) δt } δtz(x, t),

f(9.1)(x, t) = ft(x, t) + ct(x, t) z(x, t), (x, t) ∈ G
[1]
h

λ(9.1) δt z(x, t) ≡
{

ε α

{
−δx, x = 0,

δx, x = 1

}
+ β̌(x, t)

}
δt z(x, t),

ψ(9.1)(x, t) = ψt(x, t)− βt(x, t) z(x, t), (x, t) ∈ S
[1]L
h ,

ϕ(9.1)(x, t) = ϕ 0
(9.1)(x) ≡ τ−1 [ z(x, τ)− ϕ(x) ] , t = τ, (x, t) ∈ S

[1]
0h ,

v̌(x, t) = v(x, t− τ) where v̌(x, t) is one of the functions č(x, t), p̌(x, t), β̌(x, t).

The function δt u(x, t) ≡ [u(x, t)− u(x, t− τ)]/τ , (x, t) ∈ G, t > τ is the solution of the
differential problem

L(9.2) δt u(x, t) = f(9.2)(x, t), (x, t) ∈ G[1], (9.2a)

l(9.2) δt u(x, t) = ψ(9.2)(x, t), (x, t) ∈ S[ 1]L, (9.2b)

δt u(x, t) = ϕ(9.2)(x, t), (x, t) ∈ S
[1]
0 . (9.2c)

Here

G
[k]

= G ∩ {t > kτ} , G[k] = G ∩ {t > kτ} , S[k] = G
[k] \G[k],

S [k] = S
[k]
0 ∪ S [k]L, S

[k]
0 = G ∩ {t > kτ} , k > 1,

L(9.2)δtu(x, t) ≡
{

εa
∂2

∂x2
+ b

∂

∂x
− č(x, t)− pt(x, t)− p̌(x, t)

∂

∂t

}
δt u(x, t),

l(9.2) δt u(x, t) ≡
{

ε α

{
−(d/dx), x = 0,

(d/dx), x = 1

}
+ β̌(x, t)

}
δt u(x, t),

f(9.2)(x, t)=ft(x, t) + ct(x, t)u(x, t) + pt(x, t)

(
∂u

∂t
(x, t)− δt u(x, t)

)
,

ψ(9.2)(x, t) = ψt(x, t)− βt(x, t) u(x, t), (x, t) ∈ S [1]L,

ϕ(9.2)(x, t)=ϕ 0
(9.2)(x) ≡ τ−1 [ u(x, τ)− ϕ(x) ] , t = τ, (x, t) ∈ S

[1]
0 .

Let us estimate

ϕ 0
(9.2)(x)− ϕ 0

(9.1)(x) = τ−1ω(x, τ),

where

ω(x, t) = u(x, t)− z(x, t), (x, t) ∈ Gh.
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The function ω(x, t) is the solution of the problem

Λ(6.3) ω(x, t) = (Λ(6.3) − L(2.1)) u(x, t), (x, t) ∈ Gh,

λ(6.3) ω(x, t) = (λ(6.3) − l(2.1)) u(x, t), (x, t) ∈ SL
h , ω(x, t) = 0, (x, t) ∈ S0h.

The above assumptions and Theorem 8.1 lead to the estimates of the truncation error (the
deduction technique for these estimates are shown, for example, in [2, 3, 7])

∣∣ (
Λ(6.3) − L(2.1)

)
U(x, t)

∣∣ 6 M
[
N−1 ln N + τ

]
, (x, t) ∈ Gh

∣∣(Λ(6.3) − L(2.1)

)
W (x, t)

∣∣ 6 M
[
ε−1N−1 ln N exp(−mε−1x) + τ

]
, (x, t) ∈ Gh, x 6 σ,

where U(x, t) and W (x, t) are the regular and singular parts of the solution from (8.4);
σ = σ(4.1), m = m(8.7). For the components W (x, t) and W h(x, t) the following estimate is
also satisfied

|W (x, t)| ,
∣∣W h(x, t)

∣∣ 6 M N−1, (x, t) ∈ Gh, x > σ.

Here W h(x, t) is the solution of the problem

Λ(6.3) W h(x, t) = 0, (x, t) ∈ Gh,

λ(6.3) W h(x, t) = l(2.1) W (x, t), (x, t) ∈ SL, W h(x, t) = W (x, t), (x, t) ∈ S0h.

Using the maximum principle we estimate ω(x, t)

|ω(x, t) | 6 M
[
N−1 ln N + τ

]
t, (x, t) ∈ Gh.

Further, for the derivatives we proceed similarly. On the boundary we have

| δtu(x, τ)− δtz(x, τ) | =
∣∣ ϕ 0

(9.2)(x)− ϕ 0
(9.1)(x)

∣∣ 6 M
[
N−1 ln N + τ

]
, (x, t) ∈ S

[1]
0h , t = τ,

i.e. the function δtz(x, τ) approximates δtu(x, τ) ε-uniformly. Now, it is easy to see
that the solution of the difference problem (9.1) approximates the solution of the differential
problem (9.2) for the divided difference. Thus, using the same argument as above, we derive
the estimate

| δtu(x, t)− δtz(x, t) | 6 M
[
N−1 ln N + τ

]
, (x, t) ∈ G

[1]

h . (9.3)

Now, for the 2nd difference derivative we show that under condition (6.6) the function

δ2t z(x, t) approximates the function δ2t u(x, t) ε-uniformly on the set G
[2]

h . So, the functions
δ2tz(x, t) and δ2tu(x, t) are solutions of the equations

Λ(9.4)δ 2tz(x, t) = f(9.4)(x, t), (x, t) ∈ G
[2]
h , (9.4a)

L(9.5)δ 2tu(x, t) = f(9.5)(x, t), (x, t) ∈ G
[2]
h . (9.5a)

The equations are found by applying the operator δt to equations (9.1a) and (9.2a). At the
left and the right boundaries the following conditions are satisfied:

λ(9.4) δ2t z(x, t) = ψ(9.4)(x, t), (x, t) ∈ S
[2]L
h , (9.4b)

l(9.5) δ2tu(x, t) = ψ(9.5)(x, t), (x, t) ∈ S
[2]L
h , (9.5b)
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where

λ(9.4) δ 2t z(x, t) ≡
{

ε α

{
−δx, x = 0,

δx, x = 1

}
+ ˇ̌β(x, t)

}
δ2t z(x, t), (x, t) ∈ S

[2]
h , (9.4c)

ψ(9.4)(x, t) = δ2t ψ(x, t)− 2 δ t β̌(x, t) δ t z(x, t)− δ2t β(x, t) z(x, t), (x, t) ∈ S
[2]
h ,

l(9.5) δ 2t u(x, t) ≡
{

ε α

{
−(∂/∂x), x = 0,

(∂/∂x), x = 1

}
+ ˇ̌β(x, t)

}
δ 2t u(x, t), (x, t) ∈ S[2]. (9.5c)

ψ(9.5)(x, t) = δ2t ψ(x, t)− 2 δ t β̌(x, t) δ t u(x, t)− δ2t β(x, t) u(x, t), (x, t) ∈ S[2],

First we estimate

ϕ 0
(9.5)(x)− ϕ 0

(9.4)(x) ≡ δ2t u(x, t)− δ2t z(x, t), t = 2τ.

For this purpose we write the function u(x, t) in a Taylor expansion in t

u(x, t) = a(1)(x)t + a(2)(x)t2 + v2(x, t) ≡ u[2](x, t) + v2(x, t), (x, t) ∈ G, (9.6)

where the coefficients a(1)(x), a(2)(x) should be determined. Inserting u(x, t), in its form
(9.6), into equation (2.1a), we come to the system

−p(x, 0)a(1)(x) = f(x, 0),

−2p(x, 0)a(2)(x) + εa
∂2

∂x2
a(1)(x) + b

∂

∂x
a(1)(x)−

(
c(x, 0) +

∂

∂t
p(x, 0)

)
a(1)(x) =

∂

∂t
f(x, 0)

from which the functions a(1)(x), a(2)(x) can be found successively. The function v2(x, t)
is the solution of the boundary-value problem

L(2.1)v2(x, t) = f(9.7)(x, t) ≡ f(x, t)− L(2.1)u
[ 2](x, t), (x, t) ∈ G, (9.7)

l(2.1)v2(x, t) = ψ(9.7)(x, t) ≡ ψ(x, t)− l(2.1)u
[2](x, t), (x, t) ∈ SL,

v2(x, t) = ϕ(9.7)(x, t) ≡ ϕ(x)− u [2](x, t), (x, t) ∈ S0.

Estimating f(9.7)(x, t), ψ(9.7)(x, t), and ϕ(9.7)(x, t), and using the maximum principle, we
derive the estimate

| v 2(x, t) | 6 M t3, (x, t) ∈ G. (9.8)

Further we have to construct the function z(x, t) in the form

z(x, t) =
(
b

(1)
0 (x) + b

(1)
1 (x)τ

)
t + b

(2)
0 (x) t2 + v h

2 (x, t) ≡ z [2](x, t) + v h
2 (x, t), (x, t) ∈ Gh,

i.e., as an expansion in powers of τ and t. Inserting z(x, t) into equation (6.3), we arrive at
the equations

−p(x, 0)b
(1)
0 (x) = f(x, 0), b

(2)
0 (x) + b

(1)
1 (x) = 0,

b
(1)
0 (x) + b

∂

∂x
b

(1)
0 (x)−

(
c(x, 0) +

∂

∂t
p(x, 0)

)
b

(1)
0 (x) =

∂

∂t
f(x, 0).
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So, we have

z [2](x, t) = u [2](x, t) + b
(1)
1 (x)τt, (x, t) ∈ Gh. (9.9)

The function v h
2 (x, t) is the solution of the discrete boundary-value problem

Λ(6.3)v
h
2 (x, t) = f(9.10)(x, t) ≡ f(x, t)− Λ(6.3)z

[2](x, t), (x, t) ∈ Gh, (9.10)

λ(6.3)v
h
2 (x, t) = ψ(9.10)(x, t) ≡ ψ(x, t)− λ(6.3)z

[2](x, t), (x, t) ∈ SL
h ,

v h
2 (x, t) = ϕ(9.10)(x, t) ≡ ϕ(x, t)− z [2](x, t), (x, t) ∈ S0h.

Taking into account estimates of the functions f(9.10)(x, t) and ϕ(9.10)(x, t), we derive the
estimate

∣∣ v h
2 (x, t)

∣∣ 6 M
[
N−1 ln N + t

]
t2, (x, t) ∈ Gh. (9.11)

By virtue of relations (9.8), (9.9) and (9.11), the following inequality is valid:

∣∣ϕ0
(9.5)(x)− ϕ0

(9.4)(x)
∣∣ = | δ2tu(x, t)− δ2tz(x, t) |
6 M

[
N−1 ln N + τ

]
, (x, t) ∈ Gh, t = 2τ.

(9.12)

We continue by estimating δ2tu(x, t) − δ2tz(x, t) for t > 2τ . Note that the functions
δ2tu(x, t) and δ2tz(x, t) are solutions of the differential and difference equations, obtained from
equations (2.1) and (6.3), respectively, by applying the operator δ2t. Moreover, the difference
equation (9.4a) for δ2tz(x, t) approximates the differential equation (9.5a) for δ2tu(x, t) ε-
uniformly. On the boundary SL

h we have equations (9.4b), (9.5b). Taking into account
estimates (9.12) and (4.2), (9.3), we find

| δ2tu(x, t)− δ2tz(x, t) | 6 M
[
N−1 ln N + τ

]
, (x, t) ∈ Gh, t > 2τ. (9.13)

So, we come to the estimates

∣∣ δ tu(x, t)− δ tz
(1)(x, t)

∣∣ 6 M
[
N−1 ln N + τ

]
, (x, t) ∈ Gh, t > τ, (9.14)∣∣ δ2tu(x, t)− δ2tz

(1)(x, t)
∣∣ 6 M

[
N−1 ln N + τ

]
, (x, t) ∈ Gh, t > 2τ,∣∣u(x, t)− z(2)(x, t)

∣∣ 6 M
[
N−1 ln N + τ 2

]
, (x, t) ∈ Gh.

This completes the proof.
Now, as a direct consequence of the theorem, we make two remarks to prepare the proof

of Theorem 6.2.

Remark 9.1. Above we have found (9.13) for z(k)(x, t), k = 1. In completely the same
way we derive this bound for k = 2, so that we obtain

∣∣ δ2t u(x, t)− δ2t z
(k)(x, t)

∣∣ 6 M
[
N−1 ln N + τ k

]
, (x, t) ∈ Gh, t > kτ, k 6 2. (9.15)

Remark 9.2. Making use of (9.15), similar to the derivation of estimate (9.14), we also
find

∣∣ δ3t u(x, t)− δ3t z
(1)(x, t)

∣∣ 6 M
[
N−2 ln N + τ

]
, (x, t) ∈ Gh, t > 3τ. (9.16)
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We briefly indicate the differences with the proof given above for (9.14). To estimate the
difference between δ3t u(x, t) and δ3t z(x, t) for t = 3τ , we represent the function u(x, t) (with
condition (6.9)) in the form

u(x, t) = a(2)(x)t2 + a(3)(x)t3 + v3(x, t) ≡ u [3](x, t) + v3(x, t), (x, t) ∈ G,

and the function z(x, t) in the form

z(x, t) = u [3](x, t) + (b
(1)
1 (x)τ + b

(1)
2 (x)τ 2)t + b

(2)
1 (x)τt2 + v h

3 (x, t) ≡
≡ z [3](x, t) + v h

3 (x, t), (x, t) ∈ Gh.

The coefficients of these expansions are found using equations (2.1) and (6.3), respectively.
For the coefficients we have the system

− 2p(x, 0)a(2)(x) =
∂

∂t
f(x, 0), −b

(1)
1 (x) + a(2)(x) = 0, −b

(1)
2 (x)− a(3)(x) + b

(2)
1 (x) = 0,

− 3p(x, 0)a(3)(x)+εa
∂2

∂x2
a(2)(x) + b

∂

∂x
a(2)(x)−

(
c(x, 0)+2

∂

∂t
p(x, 0)

)
a(2)(x)=

1

2

∂2

∂t2
f(x, 0),

− 2p(x, 0)b
(2)
1 (x) +

∂

∂t
p(x, 0)a (2)(x) + 3p(x, 0)a(3)(x)−

−
(

∂

∂t
p(x, 0) + c(x, 0)

)
b
(1)
1 (x) + εa

∂2

∂x2
b
(1)
1 (x) + b

∂

∂x
b
(1)
1 (x) = 0.

The unknown functions a(2), a(3), b
(1)
1 , b

(2)
1 , b

(1)
2 can be found successively. For the function

v3(x, t) and v h
3 (x, t) the following estimates are derived

| v 3(x, t) | 6 M t4, (x, t) ∈ G,
∣∣ v h

3 (x, t)
∣∣ 6 M

[
N−1 ln N + t

]
t3, (x, t) ∈ Gh.

From these inequalities and the expression for z[3](x, t) it follows that (9.16) holds ε-uniformly
for t = 3τ . The remainder of the proof of the estimate (9.16) repeats with small variations
the proof of the estimate (9.14).

9.2. The proof of Theorem 6.2

Notice that, if the following relations hold for the functions z (1)(x, t) and z (2)(x, t):
∣∣ δ3t u(x, t)− δ3t z

(1)(x, t)
∣∣ 6 M

[
N−1 ln N + τ

]
, (x, t) ∈ Gh, t > 3τ, (9.17)

∣∣ δ2t u(x, t)− δ2t z
(2)(x, t)

∣∣ 6 M
[
N−1 ln N + τ 2

]
, (x, t) ∈ Gh, t > 2τ,

then for the difference u(x, t)− z (3)(x, t) ≡ ω(3)(x, t) we obtain
∣∣ Λ(6.3)ω

(3)(x, t)
∣∣ 6 M

[
N−1 ln N + τ 3

]
, (x, t) ∈ Gh, ω(3)(x, t) = 0, (x, t) ∈ Sh.

Hence we have
∣∣u(x, t)− z (3)(x, t)

∣∣ 6 M
[
N−1 ln N + τ 3

]
, (x, t) ∈ Gh.

Thus, for the proof of the theorem it is sufficient to show inequalities (9.17). These
inequalities follow from (9.15), (9.16). This completes the proof of Theorem 6.2.
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Conclusion

In this paper we have shown theoretically that the use of a defect correction technique for the
class of boundary-value problems in the case of a singularly perturbed parabolic convection-
diffusion equation with the singularly perturbed Robin boundary condition allows us to
construct effectively ε-uniformly convergent schemes with the second and third orders of
accuracy with respect to t , still preserving the ε-uniform first-order accuracy in space. The
same technique can be applied in order to construct similar schemes with the order of time-
accuracy more than three.

The original technigue for experimental study of the convergence parameters of ε - uni-
formly convergent schemes have been developed which can be applied to the cases where the
error components due to the discretization of the space and time derivatives can be essen-
tially (many times) different. In particular, as has been observed in the paper for a model
problem, the time error is a quantity of the order 10−4 – 10−10, whereas the space error is of
the order 10−1 – 10−2. Thus, the time error is considerably smaller than the space error, and
the total error is practically equal to the latter.

It is shown with numerical experiments that the use of the defect correction technique in
practice does not affect the magnitude of the error component due to the discretization in
x. The magnitude of the error component due to the discretization in t decreases essentially
for schemes with a higher order of accuracy in t.

The numerical example is given when the passage to the scheme of third-order accuracy in
t make it possible to decrease the number of the time steps from 512 to 16 with preservation
of the ε-uniform accuracy of the approximate solution. As a practical result, this means
the substantial decrease in the amount of computational work with preserving (moreover,
improving) the ε-uniform global accuracy of the final solution.
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