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Abstract

In this paper we solve numerically two singularly perturbed linear convection±dif-

fusion problems for heat transfer in a ¯uid with an assumed ¯ow ®eld in the neigh-

bourhood of a 180° bend in a channel. In the ®rst problem the theoretical solution has a

parabolic boundary layer and in the second problem there is both a parabolic and a

regular boundary layer in the solution. The numerical method uses piecewise uniform

®tted meshes condensing in a neighbourhood of each boundary layer and a standard

upwind ®nite di�erence operator satisfying a discrete maximum principle. The numer-

ical results con®rm computationally that the method is e-uniform in the sense that the

rate of convergence and the error constant of the method are independent of the sin-

gular perturbation parameter e, where e denotes the reciprocal of the P�eclet number of

the ¯uid. This e-uniform behaviour is obtained only when an appropriate piecewise

uniform ®tted mesh is constructed for each boundary layer. This is con®rmed by several

additional computations on meshes which do not ful®ll this requirement. Ó 2001
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1. Introduction

Singularly perturbed di�erential equations are characterized by the presence
of a small parameter e multiplying the highest order derivatives. Such problems
arise in many areas of applied mathematics. The solutions of singularly per-
turbed di�erential equations typically have steep gradients, in thin regions of
the domain, whose magnitude depends inversely on some positive power of e.
Such regions are called either interior or boundary layers, depending on
whether their location is in the interior or at the boundary of the domain.

The location and width of these layers depend on the local asymptotic na-
ture of the solution of the di�erential equation. Layers described by an ordi-
nary, parabolic or elliptic di�erential equation are called, respectively, regular,
parabolic or elliptic layers. Numerical methods for which the error bounds are
independent of the singular perturbation parameter e are called e-uniform
methods.

In this paper, numerical results are presented for two singularly perturbed
linear convection±di�usion problems for heat transfer in a ¯uid with an as-
sumed ¯ow ®eld in the neighbourhood of a 180° bend in a channel. The
singular perturbation parameter e is the reciprocal of the P�eclet number of
the ¯uid. A key advantage of e-uniform methods for practical problems is
that the same numerical method is applicable whatever the material in the
channel. In the ®rst problem a parabolic layer appears in the solution. The
second problem is more di�cult because it has a parabolic layer on one part
of the boundary and a regular layer on another part. The numerical results
con®rm computationally that these numerical methods, which use a standard
upwind ®nite di�erence operator satisfying a maximum principle on a
piecewise-uniform ®tted mesh, are e-uniform. That is, the pointwise error of
the numerical solutions is guaranteed to decrease at a ®xed rate as the mesh
is re®ned regardless of the value of the P�eclet number. In fact it has been
established theoretically in [1] that such numerical methods are e-uniform for
a wide class of singularly perturbed problems, including the problems con-
sidered here.

Piecewise-uniform ®tted meshes were ®rst introduced and analyzed by
Shishkin [2]. The ®rst computations using such methods were presented in [3].
In [4] numerical results are presented for a simpler problem which has a par-
abolic, but no regular, layer. An introduction to the theory of ®tted mesh
methods is contained in [5].

It is important to note that we use the maximum norm in the entire domain
to measure the pointwise error. Since piecewise uniform ®tted meshes have
points in the boundary layers it follows that the results we obtain are accurate
not only outside, but also within the boundary layers. Furthermore, the
pointwise errors within the boundary layers are found to be comparable in
magnitude to those in the rest of the domain. This is in marked contrast to
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previous results for problems of this type, where qualitative rather quantitative
measures of the accuracy are employed.

2. Statement of the problem

Letting h denote the temperature, ~u � �u1; u2� the velocity of the ¯uid and
e � 1=Pe, (where Pe is the P�eclet number) the coe�cient of di�usion, the
transfer of heat in a two-dimensional region X is described by the following
linear convection±di�usion equation:

r � �ÿerh�~uh� � f in X; �2:1a�
where it is assumed that X is a bounded domain with Lipschitz continuous
boundary C. Let CD and CN, respectively denote the parts of C on which Di-
richlet and Neumann boundary conditions are speci®ed, where C � CD [ CN

and CD \ CN � ;. Let~n denote the outward unit normal on C. The in¯ow and
out¯ow boundaries Ci and Co are de®ned, respectively by

Co � f�x; y� 2 C: �~u �~n��x; y� > 0g;
Ci � f�x; y� 2 C: �~u �~n��x; y� < 0g:

It is assumed that CD � Ci, that the di�usion coe�cient e is positive and that
r �~u � 0. The latter condition means that the ¯ow is incompressible. When
e� 1, the di�erential Eq. (2.1a) is singularly perturbed and the ¯ow is said to
be convection dominated.

In the convection dominated case, the solution of this linear problem can
exhibit various singularities, depending on the choice of boundary conditions,
and it can be decomposed into the sum of a smooth and a singular component for
each kind of singularity. In this paper we consider problems exhibiting two
di�erent types of singularities. In Problem 1 we choose boundary conditions so
that there is just one kind of singularity, namely a parabolic boundary layer, and
in the second problem we take the boundary conditions so that the solution has a
parabolic layer at one part of the boundary and a regular layer at another. The
main goal of this paper is to construct appropriate ®tted mesh methods to obtain
e-uniformly accurate solutions for both of these particular problems. Because of
the linearity, it is clear that similar numerical methods will give e-uniformly ac-
curate solutions of any general linear problem having these types of singularities.

In both problems Dirichlet and Neumann boundary conditions of the fol-
lowing form are used:

h � g on CD; �2:1b�
oh
on
� 0 on CN: �2:1c�

C. Clavero et al. / Appl. Math. Comput. 118 (2001) 223±246 225



The streamlines of the reduced equation corresponding to (2.1a) are in the
direction~u. The boundary is said to be characteristic at a point �x; y� 2 C if the
tangent to C at that point is in the direction~u. Equivalently, C is characteristic
at each point �x; y� 2 C at which

�~u �~n��x; y� � 0:

In what follows the domain is X � �ÿ1; 1� � �0; 1� and the ¯ow ®eld~u is taken
to be [6]

~u�x; y� � �2y�1ÿ x2�;ÿ2x�1ÿ y2��T: �2:1d�
Thus the components of~u vanish and change sign at various points of X. The
inhomogenous term f is assumed to satisfy

f �x; y� � 0: �2:1e�
It follows from the de®nitions that Ci � f�x; 0�: ÿ1 < x < 0g and Co �
f�x; 0�: 0 < x < 1g. This corresponds to heat transfer in a ¯uid with the
assumed ¯ow ®eld in the neighbourhood of a 180° bend of the channel.

In Problem 1 the Neumann part CN of the boundary is taken to be

CN � Co: �2:1f�
On the Dirichlet part CD of the boundary the boundary conditions are de®ned
by

g�x; y� �
1ÿ y on Ce;
sin4�x� 1

2
� on Cf ;

0 on CD n Ce [ Cf �;

8<: �2:1g�

where Ce � f�1; y�: 0 < y < 1g and Cf � f�x; 0�: ÿ1=26 x6 0g. This choice of
boundary conditions ensures compatibility and that the only boundary layer in
the solution is a parabolic layer in a neighbourhood of the edge Ce.

In [7] Hutton considered a similar problem with the Dirichlet boundary
conditions

g�x; y� � 1� tanh�20x� 10� on Ci;
0 on CD n Ci:

�
With this choice the solution has no boundary layers. His problem demon-
strates the e�ects of cross-stream di�usion when the streamlines are not parallel
to the co-ordinate axes. A further study of the problem was made in [8] with the
Dirichlet boundary conditions

g�x; y� �
1� tanh�20x� 10� on Ci;
100 on Ce;
0 on CD n �Ci [ Ce�:

8<:

226 C. Clavero et al. / Appl. Math. Comput. 118 (2001) 223±246



The solution of this problem exhibits a parabolic boundary layer in a neigh-
bourhood of the edge Ce, but it also has an additional discontinuity arising
from an incompatibility of the boundary conditions at the corner point (1,1).
Our choice of Dirichlet boundary conditions (2.1g) is more suitable for the
investigation of the e�ect of a parabolic boundary layer, because it is not
complicated by any further e�ect due to an incompatibility in the boundary
conditions, as is the case with Scotney's choice. Numerical experiments using
higher-order ®nite di�erence schemes on problems similar to those considered
by Hutton and Scotney were reported in [9,6]. A recent comprehensive dis-
cussion of such problems and their numerical solution is contained in [10]. In
[4] Clavero et al. applied a similar numerical method to that used in the present
paper for the following choice of Dirichlet boundary conditions

g�x; y� � 1ÿ y on Ce;
0 on CD n Ce;

�
and thus g � 0 on the in¯ow boundary Ci. At the end of the present paper, we
show computationally that non-zero boundary conditions on Ci do not in¯u-
ence the uniform convergence of this numerical method.

In Problem 2, CD � oX and the boundary conditions are given by (see
Fig. 1)

Fig. 1. Sketch of the boundary value h�x; 0� for Problem 2.
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g�x; y� �

1ÿ y on Ce;
sin4�x� 1=2� on Cf ;

sin4�ÿx� 1=2� on Cg;
4�xÿ 1=4ÿ �xÿ 1� sin4�1=4��=3 on Ch;
0 on CD n �Ce [Cf [Cg [Ch�;

8>>>><>>>>:
�2:1h�

where Ce � f�1; y�: 0 < y < 1g, Cf � f�x; 0�: ÿ1=26 x6 0g, Cg � f�x; 0�: 0
6 x6 1=4g, Ch � f�x; 0�: 1=46 x6 1g.

This choice of boundary conditions ensures compatibility at the corners of X
and that we have two types of singularity in the solution, namely a parabolic
layer in a neighbourhood of the edge Ce and a regular layer in a neighbourhood
of the boundary Ch. Note that the boundary conditions are symmetric on Cf

and Cg, and so the regular layer occurs only on Ch. Without this symmetry the
problem is more complicated and the numerical method used here is not
suitable.

Both uniform and piecewise-uniform meshes are used to discretize the do-
main X. Since the piecewise uniform meshes are problem-dependent, their
construction is described later for each problem separately. Mesh functions
de®ned on the mesh XN�N are denoted by hN , and the following mesh pa-
rameters are introduced:

hi � xi ÿ xiÿ1; ~hi�1 � �hi�1 � hi�=2;

kj � yj ÿ yjÿ1; ~kj�1 � �kj�1 � kj�=2:
�2:2�

We write hi;j � hN �xi; yj�. On XN�N the following upwind ®nite di�erence op-
erator is de®ned by

ÿe�d2
x � d2

y�hN � ~Dx�u1h
N � � ~Dy�u2h

N � � 0

for i � 1; . . . ;N ÿ 1; j � 1; . . . ;N ÿ 1;
�2:3a�

where ~Dx is the ®rst order upwind ®nite di�erence operator

~Dx�u1h
N � � u1;i;jÿ j u1;i;j j

2
D�x hi;j � u1;i;j� j u1;i;j j

2
Dÿx hi;j; �2:3b�

Dÿx hi;j � hi;j ÿ hiÿ1;j

hi
and D�x hi;j � hi�1;j ÿ hi;j

hi�1

: �2:3c�

The operator ~Dy is de®ned analogously. The standard second order centered
®nite di�erence is

d2
xhi;j � D�x hi;j ÿ Dÿx hi;j

~hi�1

; �2:3d�

and d2
y is de®ned analogously. The boundary conditions are discretized as

follows:
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Problem 1.

hi;1 ÿ hi;0

k1

� 0 for i � N
2
� 1; . . . ;N ÿ 1; �2:3e�

hi;0 � 0 for i � 0; . . . ;N0; where xN0
< ÿc16 xN0�1; �2:3f�

hi;0 � h�xi� for i � N0 � 1; . . . ;
N
2
; �2:3g�

hi;M � 0 for i � 0; . . . ;N ÿ 1; �2:3h�
h0;j � 0 for j � 1; . . . ;N ÿ 1; �2:3i�
hN ;j � 1ÿ yj for j � 0; . . . ;N : �2:3j�

Problem 2.

hi;0 � 0 for i � 0; . . . ;N0; where xN0
< ÿc16 xN0�1; �2:3k�

hi;0 � h1�xi� for i � N0 � 1; . . . ;
N
2
; �2:3l�

hi;0 � h1�ÿxi� for i � N
2
� 1; . . . ;N1 where xN1

< c26 xN1�1; �2:3m�
hi;0 � h2�xi� for i � N1 � 1; . . . ;N ÿ 1; �2:3n�
hi;M � 0 for i � 0; . . . ;N ÿ 1; �2:3o�
h0;j � 0 for j � 1; . . . ;N ÿ 1; �2:3p�
hN ;j � 1ÿ yj for j � 0; . . . ;N : �2:3q�

Since the matrix associated with the numerical method (2.3a)±(2.3j) is an
M-matrix, the upwind ®nite di�erence operator in (2.3a) satis®es a discrete
maximum principle and the ®nite di�erence method (2.3a)±(2.3j) is stable. The
same conclusions are valid for the ®nite di�erence method (2.3a)±(2.3d) and
(2.3k)±(2.3q).

3. Numerical results on uniform meshes

Since the exact solutions of these problems are not known, the pointwise
errors j hN�xi; yj� ÿ h�xi; yj� j are approximated for successive values of e on the
six coarser meshes by eN

e �i; j� � j hN�xi; yj� ÿ h512�xi; yj� j, where the superscript
indicates the number of mesh elements used in the x-direction. That is, in the
expression for the error the unknown exact solution is replaced by the ap-
proximate solution on the ®nest mesh. For each e the maximum nodal error is
approximated by
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EN
e � keN

e kXN�N ; �3:1�

where kwkXN�N � max�xi;xj�2XN�N jw�xi; yj�j is the maximum norm on the mesh
XN�N , and for each N, the e-uniform maximum nodal error is de®ned by

EN � max
e

EN
e : �3:2�

The e-uniform rate of convergence can be estimated using the double-mesh
principle (see e.g. [11]). A numerical method for solving (2.1a)±(2.1g) is said to
have an e-uniform rate of convergence p on the sequence of meshes fXN ;Ng11 if
there exists an N0, independent of e, such that for all N P N0

sup
0<e6 1

khÿ hNkXN�N 6CNÿp;

where h is the solution of (2.1a)±(2.1g), hN is the numerical approximation to
h;C and p > 0 are independent of e and N.

In this paper an iterative method is used to solve the discretized equations.
The relaxed incomplete LU-factorisation method [12] and the preconditioned
conjugate gradient squared method are used, where the convergence criteria on
the residuals is taken to be krkk6 10ÿ6.

In this section, problems (2.1a)±(2.1g) and (2.1a)±(2.1e) (2.1h) are solved
using a numerical method composed of the upwind ®nite di�erence operator
(2.3a)±(2.3q) on a sequence of uniform meshes XN�N , with N � 8; 16; 32;
64; 128; 256; 512. Computed values of EN

e and EN are given in Table 1 for
Problem 1 and in Table 2 for Problem 2 for various values of e and N.

Note that the maximum nodal error EN does not decrease signi®cantly as the
mesh is re®ned. Such behaviour indicates computationally that this numerical
method is not e-uniform for both problems. It is important to note that the
accuracy of the approximations EN to the exact error decreases as we move to
the right in the table, because the exact solution has been replaced by h512.
More accurate values of the errors for this case are given in Table 7.

4. An e-uniform numerical method for Problem 1

Piecewise-uniform ®tted meshes XN�N
s for Problem 1 are constructed as

follows. A one-dimensional piecewise uniform ®tted mesh XN
s is constructed in

the x-direction and a one-dimensional uniform mesh XN in the y-direction. The
mesh XN�N

s is then de®ned to be the tensor product XN
s � XN of these two one-

dimensional meshes. The mesh XN
s is ®tted for Problem 1 as follows. First, the

interval �ÿ1; 1� is subdivided into the three subintervals �ÿ1; 0�; �0; 1ÿ s�;
�1ÿ s; 1� where the transition point s is de®ned by
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Table 1

Maximum nodal errors EN
e and EN on uniform meshes for Problem 1

e N

8 16 32 64 128

20 4.899E ) 2 2.893E ) 2 1.482E ) 2 7.021E ) 3 3.018E ) 3

2ÿ2 3.279E ) 2 2.775E ) 2 1.561E ) 2 7.481E ) 3 3.177E ) 3

2ÿ4 6:486Eÿ 2 3.300E ) 2 1.797E ) 2 8.765E ) 3 3.857E ) 3

2ÿ6 5.480E ) 2 6:474Eÿ 2 3.129E ) 2 1.611E ) 2 7.218E ) 3

2ÿ8 1.627E ) 2 5.284E ) 2 6:068Eÿ 2 2.770E ) 2 1.323E ) 2

2ÿ10 1.194E ) 2 1.566E ) 2 5.117E ) 2 5:523Eÿ 2 2.291E ) 2

2ÿ12 1.401E ) 2 1.440E ) 2 1.545E ) 2 4.877E ) 2 4:695Eÿ 2

2ÿ14 1.458E ) 2 1.607E ) 2 1.057E ) 2 1.533E ) 2 4.391E ) 2

2ÿ16 1.472E ) 2 1.652E ) 2 1.153E ) 2 6.407E ) 3 1.506E ) 2

2ÿ18 1.476E ) 2 1.664E ) 2 1.179E ) 2 6.564E ) 3 3.894E ) 3

2ÿ20 1.477E ) 2 1.667E ) 2 1.186E ) 2 6.699E ) 3 3.449E ) 3

2ÿ22 1.477E ) 2 1.667E ) 2 1.188E ) 2 6.733E ) 3 3.463E ) 3

2ÿ24 1.477E ) 2 1.668E ) 2 1.188E ) 2 6.742E ) 3 3.466E ) 3

2ÿ26 1.477E ) 2 1.668E ) 2 1.188E ) 2 6.745E ) 3 3.468E ) 3

2ÿ28 1.477E ) 2 1.668E ) 2 1.188E ) 2 6.745E ) 3 3.468E ) 3

2ÿ30 1.477E ) 2 1.668E ) 2 1.188E ) 2 6.745E ) 3 3.468E ) 3

2ÿ32 1.477E ) 2 1.668E ) 2 1.188E ) 2 6.745E ) 3 3.468E ) 3

EN 0.0649 0.0647 0.0607 0.0552 0.0469

Table 2

Maximum nodal errors EN
e and EN on uniform meshes for Problem 2

e N

8 16 32 64 128

20 1.792E ) 2 1.019E ) 2 5.306E ) 3 2.647E ) 3 1.230E ) 3

2ÿ2 3.259E ) 2 1.649E ) 2 8.526E ) 3 4.068E ) 3 1.765E ) 3

2ÿ4 1:448Eÿ 1 1.019E ) 1 5.743E ) 2 3.071E ) 2 1.403E ) 2

2ÿ6 1.007E ) 1 1:417Eÿ 1 1:474Eÿ 1 1.118E ) 1 5.950E ) 2

2ÿ8 2.956E ) 2 7.947E ) 2 1.054E ) 1 1:128Eÿ 1 1:238Eÿ 1

2ÿ10 1.194E ) 2 2.291E ) 2 6.522E ) 2 7.911E ) 2 6.950E ) 2

2ÿ12 1.401E ) 2 1.440E ) 2 1.919E ) 2 5.597E ) 2 5.929E ) 2

2ÿ14 1.458E ) 2 1.607E ) 2 1.057E ) 2 1.723E ) 2 4.755E ) 2

2ÿ16 1.472E ) 2 1.652E ) 2 1.153E ) 2 6.300E ) 3 1.602E ) 2

2ÿ18 1.476E ) 2 1.664E ) 2 1.179E ) 2 6.564E ) 3 4.137E ) 3

2ÿ20 1.477E ) 2 1.667E ) 2 1.186E ) 2 6.699E ) 3 3.433E ) 3

2ÿ22 1.477E ) 2 1.667E ) 2 1.188E ) 2 6.733E ) 3 3.459E ) 3

2ÿ24 1.477E ) 2 1.668E ) 2 1.188E ) 2 6.743E ) 3 3.465E ) 3

2ÿ26 1.477E ) 2 1.668E ) 2 1.188E ) 2 6.745E ) 3 3.467E ) 3

2ÿ28 1.477E ) 2 1.668E ) 2 1.188E ) 2 6.745E ) 3 3.467E ) 3

2ÿ30 1.477E ) 2 1.668E ) 2 1.188E ) 2 6.745E ) 3 3.468E ) 3

2ÿ32 1.477E ) 2 1.668E ) 2 1.188E ) 2 6.745E ) 3 3.468E ) 3

EN 0.1448 0.1417 0.1474 0.1128 0.1238
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s � min
1

2
;
��
e
p

ln N
� �

: �4:1�

Then, on each subinterval, a uniform mesh is constructed using N=2 mesh
points in �ÿ1; 0�; and N=4 mesh points in both of the subintervals �0; 1ÿ s� and
�1ÿ s; 1�. The piecewise uniform ®tted mesh on X is then

X
N�N
s � f�xi; yj�: 06 i; j6Ng; �4:2a�

where

xi �
ÿ1� 2i

N for 06 i6N=2;
4�1ÿs��iÿN=2�

N for N=2 < i6 3N=4;

1ÿ s� 4s�iÿ3N=4�
N for 3N=4 < i6N

8><>: �4:2b�

and

yj � j=N for 06 j6N :

Note that XN�N
s is a uniform mesh on the domain X when e or N are su�ciently

large.
The problem (2.1a)±(2.1g), is now solved using a numerical method com-

posed of the upwind di�erence operator (2.3a)±(2.3q) on the sequence of
piecewise uniform ®tted meshes XN�N

s with N � 8; 16; 32; 64; 128; 256; 512. The
errors j hN �xi; yj� ÿ h�xi; yj� j are approximated, for successive values of e, on
the six coarser meshes, by eN

e �i; j� � j hN �xi; yj� ÿ h512
I �xi; yj� j, where the

superscript N indicates the number of mesh elements used and the subscript
I denotes bilinear interpolation. For each e and N the maximum nodal error is
approximated by

EN
e � max

i;j
eN

e �i; j�; �4:3�

and for each N the e-uniform maximum nodal error is de®ned by

EN � max
e

EN
e : �4:4�

Computed values of EN
e and EN for problem (2.1a)±(2.1g) are given in Table 3

for various values of e and N.
The numerical behaviour indicated by Table 3 is quite di�erent qualitatively

from that in Table 1. Note that, for each ®xed value of e, the errors EN
e decrease

monotonically as the mesh is re®ned. Furthermore, the errors EN decrease
monotonically for increasing N and at a much faster rate than in Table 1.
Indeed, for N � 128 the result is an order of magnitude better. Hence, in-
creasing the computational e�ort yields greater accuracy, which is the intu-
itively correct behaviour for a numerical method to be considered satisfactory.
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The numerical solutions of Problem 1 for e � 2ÿ10 on, respectively the
uniform mesh and the ®tted mesh X32�32

s1;s2
are shown in Figs. 2 and 3. Another

view is obtained by comparing the contour plots of the numerical solution of
Problem 1 for e � 2ÿ10 on the uniform mesh X32�32 in Fig. 4, on the ®tted mesh
X32�32

s1;s2
in Fig. 5 and on the ®tted mesh X256�256

s1;s2
in Fig. 6.

In Table 4 the computed rates of convergence p for Problem 1 using
piecewise uniform ®tted meshes are presented. These computed rates are
consistent with the theoretical rates of e-uniform convergence stated in the
theorem in Appendix A. They suggest computationally that for Problem 1 the
e-uniform rate of convergence of this method is approaching p � 1.

5. An e-uniform numerical method for Problem 2

In this section we want to solve the problem (2.1a)±(2.1e), (2.1h). This
problem is more di�cult than the previous one, because we have two di�erent
types of boundary layers. Each ®tted mesh XN�N

s1;s2
de®ned in what follows is the

tensor product of two one-dimensional piecewise uniform ®tted meshes, ®tted
in the x-direction for the parabolic layer and in the y-direction for the regular
layer, and the numerical method is composed of the standard upwind ®nite

Table 3

Maximum nodal errors EN
e and EN on piecewise uniform ®tted meshes for Problem 1

e N

8 16 32 64 128

20 4.899E ) 2 2.893E ) 2 1.482E ) 2 7.021E ) 3 3.018E ) 3

2ÿ2 3.279E ) 2 2.775E ) 2 1.561E ) 2 7.481E ) 3 3.177E ) 3

2ÿ4 6.486E ) 2 3.300E ) 2 1.797E ) 2 8.765E ) 3 3.857E ) 3

2ÿ6 6:610Eÿ 2 4:663Eÿ 2 2:844Eÿ 2 1:611Eÿ 2 7.218E ) 3

2ÿ8 6.320E ) 2 4.482E ) 2 2.680E ) 2 1.537E ) 2 7:483Eÿ 3

2ÿ10 6.172E ) 2 4.452E ) 2 2.663E ) 2 1.532E ) 2 7.470E ) 3

2ÿ12 6.085E ) 2 4.435E ) 2 2.654E ) 2 1.530E ) 2 7.462E ) 3

2ÿ14 6.039E ) 2 4.427E ) 2 2.650E ) 2 1.529E ) 2 7.457E ) 3

2ÿ16 6.015E ) 2 4.422E ) 2 2.647E ) 2 1.528E ) 2 7.455E ) 3

2ÿ18 6.003E ) 2 4.420E ) 2 2.646E ) 2 1.528E ) 2 7.454E ) 3

2ÿ20 5.997E ) 2 4.419E ) 2 2.646E ) 2 1.527E ) 2 7.452E ) 3

2ÿ22 5.994E ) 2 4.418E ) 2 2.645E ) 2 1.527E ) 2 7.452E ) 3

2ÿ24 5.992E ) 2 4.418E ) 2 2.645E ) 2 1.527E ) 2 7.453E ) 3

2ÿ26 5.991E ) 2 4.418E ) 2 2.645E ) 2 1.527E ) 2 7.458E ) 3

2ÿ28 5.991E ) 2 4.418E ) 2 2.645E ) 2 1.527E ) 2 7.449E ) 3

2ÿ30 5.990E ) 2 4.418E ) 2 2.645E ) 2 1.527E ) 2 7.449E ) 3

2ÿ32 5.990E ) 2 4.418E ) 2 2.644E ) 2 1.527E ) 2 7.449E ) 3

EN 0.0661 0.0466 0.0284 0.0161 0.0075
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di�erence operator (2.3a)±(2.3q) on a sequence of these meshes with
N � 8; 16; 32; 64; 128; 256; 512.

The piecewise-uniform ®tted mesh in the x-direction is de®ned on the
interval �ÿ1; 1� by subdividing it into the three subintervals �ÿ1; 0�; �0; 1ÿ s1�;
�1ÿ s1; 1� where the transition point

Fig. 2. Surface plot of the numerical solution of Problem 1 for e � 2ÿ10 on the uniform mesh

X32�32.

Fig. 3. Surface plot of the numerical solution of Problem 1 for e � 2ÿ10 on the ®tted mesh X32�32
s1 ;s2

.
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s1 � min
1

2
;
��
e
p

ln N
� �

: �5:1�

The points of this piecewise uniform ®tted mesh XN
s1

in the x-direction are then
de®ned by

Fig. 5. Contour plot of the numerical solution of Problem 1 for e � 2ÿ10 on the ®tted mesh X32�32
s1 ;s2

in a neighbourhood of the edge x � 1.

Fig. 4. Contour plot of the numerical solution of Problem 1 for e � 2ÿ10 on the uniform mesh

X32�32 in a neighbourhood of the edge x � 1.
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xi �
ÿ1� 2i

N for 06 i6N=2;
4�1ÿs1��iÿN=2�

N for N=2 < i6 3N=4;

1ÿ s1 � 4s1�iÿ3N=4�
N for 3N=4 < i6N :

8><>: �5:2�

The piecewise-uniform ®tted mesh in the y-direction is de®ned on the interval
�0; 1� by subdividing it into the two subintervals �0; s2�; �s2; 1�. Here the transi-
tion point s2 is de®ned by

s2 � min
1

2
;Ce ln N

� �
; �5:3�

Table 4

Computed rates of convergence p on piecewise uniform ®tted meshes XN�N
s for Problem 1

e N

8 16 32 64

20 0.759 0.964 1.078 1.217

2ÿ2 0.240 0.830 1.061 1.235

2ÿ4 0.975 0.877 1.036 1.184

2ÿ6 0.503 0.713 0.820 1.159

2ÿ8 0.496 0.742 0.802 1.039

2ÿ10 0.471 0.741 0.797 1.037

2ÿ12 0.456 0.741 0.795 1.036

2ÿ14 0.448 0.740 0.793 1.036

. . . . .

. . . . .

. . . . .

2ÿ32 0.439 0.740 0.792 1.036

Fig. 6. Contour plot of the numerical solution of Problem 1 for e � 2ÿ10 on the ®ne ®tted mesh

X256�256
s1 ;s2

in a neighbourhood of the edge x � 1.
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where the constant C is taken to be

C � 2:1:

(Note that this value for C is used for the computations in this paper, but in
principle it can be replaced by any number greater than two.) On each sub-
interval a uniform mesh is constructed using N=2 mesh points in both �0; s2�
and �s2; 1�. The points of this piecewise uniform ®tted mesh XN

s2
in y-direction

are then de®ned by

yj �
2is2

N for 06 j6N=2;

s2 � 2�1ÿs2��jÿN=2�
N for N=2 < j6N :

(
�5:4�

The piecewise uniform ®tted mesh is now de®ned as the tensor product

XN�N
s1;s2
� XN

s1
� XN

s2
: �5:5�

Note that XN�N
s1;s2

is a uniform mesh whenever e or N are su�ciently large.
Computed values of EN

e and EN for Problem 2 are given in Table 5 for
various values of e and N.

The comments for Table 3 apply equally to Table 5. The e-uniform rate of
convergence p is estimated as before using the double-mesh principle. The
results are given in Table 6.

Table 5

Maximum nodal errors EN
e and EN on piecewise uniform ®tted meshes XN�N

s1 ;s2
for Problem 2

e N

8 16 32 64 128

20 1.792E ) 2 1.019E ) 2 5.306E ) 3 2.647E ) 3 1.230E ) 3

2ÿ2 3.259E ) 2 1.649E ) 2 8.526E ) 3 4.068E ) 3 1.765E ) 3

2ÿ4 1.310E ) 1 8.292E ) 2 5.457E ) 2 3.071E ) 2 1.403E ) 2

2ÿ6 1.814E ) 1 1.200E ) 1 8.118E ) 2 4.920E ) 2 2.469E ) 2

2ÿ8 2.023E ) 1 1.458E ) 1 9.417E ) 2 5.664E ) 2 2.973E ) 2

2ÿ10 2.121E ) 1 1.589E ) 1 1.012E ) 1 6.203E ) 2 3.240E ) 2

2ÿ12 2.166E ) 1 1.654E ) 1 1.046E ) 1 6.489E ) 2 3.381E ) 2

2ÿ14 2.188E ) 1 1.686E ) 1 1.063E ) 1 6.633E ) 2 3.455E ) 2

2ÿ16 2.199E ) 1 1.702E ) 1 1.071E ) 1 6.704E ) 2 3.491E ) 2

2ÿ18 2.204E ) 1 1.710E ) 1 1.075E ) 1 6.741E ) 2 3.509E ) 2

2ÿ20 2.207E ) 1 1.714E ) 1 1.078E ) 1 6.763E ) 2 3.519E ) 2

2ÿ22 2.208E ) 1 1.716E ) 1 1.079E ) 1 6.773E ) 2 3.523E ) 2

2ÿ24 2.209E ) 1 1.717E ) 1 1.079E ) 1 6.779E ) 2 3.525E ) 2

2ÿ26 2.209E ) 1 1.718E ) 1 1.079E ) 1 6.781E ) 2 3.527E ) 2

2ÿ28 2.210E ) 1 1.718E ) 1 1.079E ) 1 6.783E ) 2 3.527E ) 2

2ÿ30 2.210E ) 1 1.718E ) 1 1.080E ) 1 6.783E ) 2 3.527E ) 2

2ÿ32 2:210Eÿ 1 1:718Eÿ 1 1:080Eÿ 1 6:784Eÿ 2 3:528Eÿ 2

EN 0.2210 0.1780 0.1080 0.0678 0.0353
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Again, these computed rates of e-uniform convergence are consistent
with the theoretical rate stated in the theorem in Appendix A. Note that the
rates of convergence are increasing as N increases. They suggest that for
Problem 2 the e-uniform rate of convergence of this method is approaching
p � 1.

Fig. 7. Surface plot of the numerical solution of Problem 2 for e � 2ÿ10 on the uniform mesh

X32�32.

Table 6

Computed rates of convergence p using piecewise uniform ®tted meshes XN�N
s1 ;s2

for Problem 2

e N

8 16 32 64

20 0.814 0.942 1.003 1.105

2ÿ2 0.982 0.952 1.067 1.204

2ÿ4 0.660 0.604 0.829 1.130

2ÿ6 0.595 0.565 0.722 0.955

2ÿ8 0.473 0.631 0.733 0.930

2ÿ10 0.416 0.650 0.707 0.937

2ÿ12 0.389 0.660 0.690 0.940

2ÿ14 0.376 0.665 0.681 0.941

2ÿ16 0.370 0.668 0.677 0.941

. . . . .

. . . . .

. . . . .

2ÿ32 0.363 0.670 0.671 0.943
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The numerical solutions of Problem 2 for e � 2ÿ10 on, respectively the
uniform mesh X32�32 and the ®tted mesh X32�32

s1;s2
are shown in Figs. 7 and 8.

Another view of the situation is obtained by comparing the contour plots of
the numerical solution of Problem 2 for e � 2ÿ10 on the uniform mesh X32�32 in
Fig. 9 and on the ®ne ®tted mesh X256�256

s1;s2
in Fig. 10.

Fig. 8. Surface plot of the numerical solution of Problem 2 for e � 2ÿ10 on the ®tted mesh X32�32
s1 ;s2

.

Fig. 9. Contour plot of the numerical solution of Problem 2 for e � 2ÿ10 on the uniform mesh

X32�32 in a neighbourhood of the edge x � 1.
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6. Additional computational experiments

Having established computationally that numerical methods based on ap-
propriately ®tted piecewise uniform meshes are e-uniform, we look again at the
numerical solutions of Problem 1 computed on uniform meshes, but now we
estimate the error by using the e-uniform method on the ®nest available
piecewise uniform ®tted mesh X512

s to approximate the exact solution of
Problem 1. This approximation of the exact solution is then interpolated to the
required uniform mesh, and the result is used to compute a new approximation
to the error on this uniform mesh. The resulting computed errors are expected
to be better approximations of the true error than those presented in Table 1.
The results of this procedure are given in Table 7. Here it is seen more clearly
than in Table 1 that the method is not e-uniform. The remaining numerical
experiments are designed to show that in order to obtain an e-uniform method
for Problem 2, it is essential to ®t the mesh to all of the boundary layers rather
than to just a subset of them.

In the ®rst experiment Problem 2 is solved using piecewise uniform ®tted
meshes in the x-direction and uniform meshes in the y-direction. In the second
experiment the converse is the case. Thus, in the ®rst case the mesh is ®tted only
to the parabolic boundary layer, while in the second case it is ®tted only to the
regular boundary layer. The results are presented in Tables 8 and 9, respec-
tively.

In these tables, the approximate nodal errors on a uniform mesh are esti-
mated by the same procedure as was used for Table 7. We see clearly from
Table 8, where the meshes are ®tted only to the parabolic boundary layer, that

Fig. 10. Contour plot of the numerical solution of Problem 2 for e � 2ÿ10 on the ®ne ®tted mesh

X256�256
s1 ;s2

in a neighbourhood of the edge x � 1.
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the method is not e-uniform, since the maximum error E256 is bigger than the
maximum errors E8 and E16. This shows that the additional computational
e�ort due to the ®ner mesh is useless, because with more points we have a less
accurate solution. This behaviour indicates that the method is not a satisfac-
tory one.

The results in Table 9 are for meshes ®tted only to the regular boundary
layer. Since the errors EN decrease only slowly with increasing N it is clear that
the method is not e-uniform.

7. Conclusions

It was shown from the numerical solutions of two particular problems that a
standard numerical method, consisting of an upwind ®nite di�erence operator
on a uniform mesh, gives inaccurate solutions to singularly perturbed linear
convection±di�usion problems for heat transfer in a ¯uid with an assumed ¯ow
®eld in the neighbourhood of a 180° bend in a channel, when a parabolic
boundary layer is present, and also when both parabolic and regular layers are
present. Numerical computations were also presented which con®rm the
known theoretical result that e-uniform methods can be constructed for these
problems using upwind ®nite di�erence operators on piecewise uniform ®tted
meshes. In addition, further numerical experiments demonstrated that for such
e-uniform numerical methods it is necessary to ®t the meshes to all of the
boundary layers that are present.
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Appendix A. Statement of a theoretical result for a class of problems

The main theoretical result concerning numerical methods, consisting of
upwind ®nite di�erence operators on appropriately ®tted piecewise uniform
meshes, for solving a class of problems similar to (2.1a)±(2.1g), is contained in
the following theorem. It states that these methods are e-uniform, in the sense
that the error bound and the rate of convergence are independent of the sin-
gular perturbation parameter e. In order to state this theoretical result, it is
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necessary to restrict the class of problems so that, in a neighbourhood of the
corner �1; 1�, the velocity ®eld is of the form

~u � �2a1�1ÿ x2�;ÿ2a2�1ÿ y2��;
where a1; a2 are positive constants. For such problems the following theorem
can be proved using the analytical techniques described in [13,14].

Theorem. Let h be the solution of the problem (2.1a)±(2.1g) or (2.1a)±(2.1e) and
(2.1h), and let hN be the numerical approximation of h computed using an upwind
finite difference operator on the appropriate piecewise uniform fitted mesh. Then
the following pointwise error estimate holds:

sup
0<e6 1

max
i;j
j hN

i;j ÿ h�xi; yj� j 6C�Nÿ1 ln N�1=7
;

where C is a constant independent of N and e.

Note that Problems 1 and 2 considered in this paper do not satisfy the above
condition on ~u near the corner point �1; 1�. However, it is expected that this
theorem can be extended to such problems, although this has not yet been
proved rigorously.
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