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In this paper we study the discrete approximation of a Dirichlet problem on an interval for
a singularly perturbed parabolic PDE. The highest derivative in the equation is multiplied
by an arbitrarily small parameter. If the parameter vanishes, the parabolic equation
degenerates to a first-order equation, in which only the time derivative remains. For small
values of the parameter, boundary layers may appear that give rise to difficulties when
classical discretization methods are applied. Then the error in the approximate solution
depends on the value ef An adapted placement of the nodes is needed to ensure that the
error is independent of the parameter value and depends only on the number of nodes in the
mesh. Special schemes with this property are calladiformly convergent. In this paper
suche-uniformly convergent schemes are studied, which combine a difference scheme and
a mesh selection criterion for the space discretization.

Except for a small logarithmic factor, the order of convergence is one and two with
respect to the time and space variables, respectively. Therefore, it is of interest to develop
methods for which the order of convergence with respect to the time variable is increased.
In this paper we develop schemes for which the order of convergence in time can be
arbitrarily large if the solution is sufficiently smooth. To obtain uniform convergence, we
use a mesh with nodes that are condensed in the neighbourhood of the boundary layers.
To obtain a better approximation in time, we use auxiliary discrete problems on the same
time-mesh to correct the difference approximations. In this sense, the present algorithm is
an improvement over a previously published one. To validate the theoretical results, some
numerical results for the new schemes are presented.

Keywords: parabolic PDEs; higher-order time-accuracy schemes; defect correction;
e-uniform convergence.

TThis research was supported in part by the Dutch Research Organisation NWO under grant No 047.003.017
and by the Russian Foundation for Basic Research under grant No 95-01-00039a.

(© Oxford University Press 2000



100 P. W. HEMKER ETAL.

1. Introduction

In this paper we study e-uniform schemes for time-dependent singular perturbation
problems. For a genera discussion of e-uniform schemes for singular perturbation
problems we refer to Doolan et al. (1980), Shishkin (1992), Hemker et al. (1997), Morton
(1996), Roos et al. (1996). In earlier papers (Farrell et al., 19963, b, c; Hemker et al., 1997)
we haveintroduced and analysed e-uniformly convergent difference schemesfor singularly
perturbed boundary value problems for elliptic and parabolic equations. If the problem
data are sufficiently smooth, for the parabolic equations without convection terms, the
order of e-uniform convergence for the scheme that was studied is O(N=21n? N + K 1),
where N and K denote, respectively, the number of intervals in the space and time
discretization. For this scheme the amount of computational work is primarily determined
by the time discretization, which is of first-order accuracy only. The difficulty for the
singular perturbation problem, however, lies essentialy in the space direction where we
have second-order accuracy. Therefore, it isnatural to search for amethod that hasthe same
order of accuracy for both variables. To this end, we want to improve the accuracy with
respect to the time step, without essentially increasing the amount of computational work.
The improvement of the accuracy in time, maintaining e-uniform convergence, by means
of a defect correction technique was also studied in Hemker et al. (1997). In that paper,
higher-order backward differences were used to obtain a better approximation of the time
derivative. To determine the derivatives, finite difference schemes on a sequence of finer
time-meshes were used. Therefore, the implementation of the schemes in Hemker et al.
(1997) appeared somewhat cumbersome. In the present paper we develop a new approach,
also based on the defect correction principle, but which is easier to implement and analyse,
asit only uses a single time-mesh, which is the same for all auxiliary problems.

By this method we are able to achieve the same order of accuracy in both variables.
Moreover, we present a method which can achieve a higher order of accuracy with respect
to the time variable. Thus, the accuracy of this method is restricted essentially by the
second-order accuracy in space, which is the natural limit set by the character of the
problem.

2. Theclass of boundary value problems studied

On thedomain G = (0, 1) x (0, T], with boundary S= G \ G we consider the following
singularly perturbed parabolic equation with Dirichlet boundary conditions'

Lapux,t) 582% (a(x, t)%(x, t)) —c(x, Hu(x,t) (2.19)
—p(x, t)?}—?(x,t) = f(x,1), x,1) € G,
ulx, t) = p(x, t), (x,t) € S. (2.1b)

For S= S U S, wedistinguish the lateral boundary S = {(x,t) : x =0o0rx =1,
0 <t < T}, andtheinitia boundary S = {(x,t) : x € [0, 1], t = 0}. In (2.1b), a(x, t),

T The notation is such that the operator L (a.b) isfirstintroduced in equation (a.b).
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c(x, t), p(x, 1), f(x,t), (x,t) € G, and (X, 1), (x,t) € Sare sufficiently smooth and
bounded functions which satisfy

0 < ag < a(x, t), 0 < po < p(x, t), c(x,t) >0, x,t) e G. (210
Thereal parameter ¢ may take any small positive value, say
¢ € (0, 1]. (2.1d)

When the parameter ¢ tends to zero in (2.1a), layers appear in the solution in the
neighbourhood of the lateral boundary, which are described by an equation of parabolic
type (parabolic boundary layers). If an additiona first-order term b(x, t)(du(x)/9x) was
present in (2.1a) then we would see a boundary layer at the outflow boundary, that would
be described by an ordinary differential equation (an ordinary boundary layer).

3. An arbitrary non-uniform mesh

To solve problem (2.1) wefirst consider aclassical finite difference method on a (possibly)
non-uniform mesh. On the set G we introduce the rectangular mesh

Gh = @ x o, (3.1)

where @ is the (possibly) non-uniform mesh of nodal points, x', in [0, 1], @ is auniform
mesh on theinterval [0, T]; N and K are the numbers of intervalsin the meshesw and wo
respectively. Wedefiner = T/K, hi = x't1—x', h = max; h',h < M/N, Gy = GNGp,
S = SN Gp.

Here and below we denote by M (or m) sufficiently large (or small) positive constants
which do not depend on the value of the parameter ¢ or on the difference operators.

For problem (2.1) we use the difference scheme (Samarski, 1989)

A@2z(x, ) = f(x, 1), (X, 1) € Gp, (3.29)
Z(X,t) = (X, 1), x,t) € &. (3.2b)
Here

Aaaz(X, 1) = 6264 (a“(x, £)85Z(X, t)) —o(x, H)z(x, 1) — p(x, Dz(X, 1),
5 (ah(xi 1) Sxz(x, t)) — 2(hi~1 4 hi)~1 (ah(x‘+1, )8z(x, 1) — al (X, H)sgz(X | t)) :

"X . t=a ((xi—l +xhy/2, t) ,
Sxz(xt, t) = (hi~1)~1 (z(xi ) —z(xi 1, t)) ,
Syxz(x', t) = (h)~2 (z(xi“, t) — 2(x, t)) ,

sz, ) =71 (z(xi ) —z(x,t— r)) ,
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dxz(x,t) and dxz(x,t), §rz(X,t) are the forward and backward differences, and the
difference operator and 8g(a"(x, t)éxz(x,t)) is an approximation of the operator
2 (a(x, t)2 u(x, t)) on the non-uniform mesh.

From Samarski (1989) we know that the difference scheme (3.2), (3.1) is monotone.
By means of the maximum principle and taking into account estimates of the derivatives
(see Theorem 5 in the Appendix) we find that the solution of the difference scheme (3.2),
(3.1) converges for afixed value of the parameter ¢:

ux, t) —z(x, )] < M IN"1 4 1), (X, 1) € Gp. (3.3)

This error bound for the classical difference schemeis clearly not e-uniform.

The proof of (3.3) follows the lines of the classical convergence proof for monotone
difference schemes (cf. Samarski, 1989; Shishkin, 1992). Taking into account an a priori
estimate for the solution (Appendix, Section A.1), this resultsin the following theorem.

THEOREM 1 Let the estimate (A.2) hold for the solution of (2.1). Then, for afixed value
of the parameter ¢, the solution of (3.2), (3.1) converges to the solution of (2.1) with an
error bound given by (3.3).

4. The e-uniformly conver gent method

In this section we discuss an e-uniformly convergent method for (2.1) by taking a special
mesh, condensed in the neighbourhood of the boundary layers. The location of the nodes
is derived from a priori estimates of the solution and its derivatives. The way to construct
the mesh for problem (2.1) is the same as in Shishkin (1992) and Hemker et al. (1997).
Specifically, we take .

Gy, =" (0) x wo, (4.2)
wherewg isthe uniform mesh with step-sizet = T/K, i.e. wg = @wo@z.1), and o™ = w*(0)
is a special piecewise uniform mesh depending on the parameter o € R, which depends
on e and N. We teke 0 = o@4.1)(e, N) = min(1/4, meInN), where m = m.1) isan
arbitrary positive number. The mesh @ * (o) is constructed as follows. The interval [0, 1]
isdividedintothreeparts[0,0],[0,1—0],[1—0,1],0 < o < 1/4. In each part we use
a uniform mesh, with N/2 subintervalsin [ o, 1 — o ] and with N /4 subintervals in each
interval [0,0] and[1— o, 1].

THEOREM 2 If the solution of problem (2.1) satisfies the conditions of Theorem 5
(Appendix), then the solution of (3.2), (4.1) converges e-uniformly to the solution of (2.1)
and the following estimate holds:

lu(x, t) — z(x, t)]| < M(N"?In® N + 1), (x,t) € Gy, (4.2)
The proof of this theorem can be found in Shishkin (1992).

5. Numerical results

To see the effect of the special mesh in practice, we take the model problem

Lsnu(x, t) =52@(x t) — a—u(x )= f(x,1t) x,1) € G (5.1)
(51) ’ - aXZ ) 8t ’ - ’ 9 ’ ’ .
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ux,t) = e(x,t), x,t) €S,

where
fo,) =43  (x1)eG, oxt)=0  (X,DeS

In Hemker et al. (1997) we compared the numerical results for scheme (3.2) on the
uniform mesh Gﬁ = Gh(3.1), Wherew = @" is auniform mesh, and on the special mesh
(4.1), adapted to the value . For T = 1 we presented the error E(N, K, ¢), defined by

E(N,K,e) = max |z(x,t) —u*(x,1)|. (5.2
x,t)eGp
Here u*(x, t) is the piecewise linear interpolation obtained from the numerical solution
Z(X, 1) on an adapted mesh with parameters 0 = min(1/4,2¢InN), N = K = 512.
Notice that no special interpolation is needed for the time variable.

In Hemker et al. (1997) we compared results for the uniform and adapted mesh, and
we showed the errors E(N, N, ¢), for N = 2%, K = 3, ..., 8, for various values of .
From the results in Hemker et al. (1997), e-uniform convergence can be observed but it
is difficult to analyse the order of e-uniform convergence in space and in time. Therefore,
here we want to supplement these numerical results with values for E(N, N2, ¢), for the
adapted mesh, for the same N and for the same values of ¢.

In Table 1 we give the results for the same scheme (3.2), (4.1) but with K = N2,
Here we can clearly see that, in accordance with estimate (4.2), the order of convergence
isO(N~2In? N + K1), For large N the order of convergence 2 (resp. 1) with respect to
the space and time variable corresponds with the theoretical results.

TABLE 1
Errors E(N, N2, &) for the special method (3.2), (4.1). In this table the function E(N, N2, ¢) is
defined by (5.2), but now z(x, t) in (5.2) is the solution of (3.2), (4.1) with m = 2, G, = Gy,
N = 512. Inthe last row E(N) gives the maximum over each column.

e\ N 8 16 32 64 128 256
1

0 7-411E—04 1-843E—04
2-1 7-305E—03 1-821E—03
22 2-184E—02 5-459E—03
23 3.086E—02 1-150E—02
2—4 3148E-02 3-433E—02
2-5 3149E—-02 3-827E—02
2-62-12  3.149E-02 3-796E—02

4-588E—05
4-538E—-04
1-361E—-03
3-064E—-03
1-391E-02
3-325E—-02
3:275E-02

1-133E-05
1-121E-04
3:362E—-04
7-699E—-04
3-630E—03
1-434E—-02
1-358E—-02

2-:698E—06
2:669E—-05
8-:005E—05
1-844E-04
8- 764E—04
3-597E-03
4-015E—-03

5-395E—-07
5-338E—-06
1-601E—-05
3-699E—-05
1.760E—-04
7-292E—-04
1.683E—-03

EN) 3149E—02 3-827E—02

3:325E—-02

1-434E—-02

4-015E—-03

1.683E—-03

6. Improved time accuracy

6.1 A scheme based on defect correction

In this section we construct a new discrete method based on defect correction, which also
converges e-uniformly to the solution of the boundary value problem, but with an order of
accuracy (with respect to 7) higher than in (4.2).
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The idea is similar to that in Hemker et al. (1997). For the difference scheme (3.2),
(4.1) the error in the approximation of the partial derivative (3/0t) u(x, t) is caused by the
divided difference 8 z(x, t) and is associated with the truncation error given by therelation

au 4 3% 1 9%

g(x,t) —5fu(x, t):2 Tw(x, t)—6 T F(X,t —19), (61)
where & € [0, r]. Therefore, with the notation from Section 3, we now use for the
approximation of (8/dt) u(x, t) the expression

Sru(x, t) + térr U(X, t)/2,

where §rru(X, t) = §;ru(X,t — 7). Notice that ;7 u(x, t) isthe second central divided
difference. We can evaluate a better approximation than (3.2a) by defect correction
. 3 9%u
A@2Z (X, 1) = (X, t) =277 p(x, )T W(X’ 1), (6.2
with X € w andt € @p, where @ and wg are as in (3.1); 7 is the step-size of the mesh
wo; Z°(x, 1) isthe ‘corrected’ solution. Instead of (92/8t?) u(x, t) we shall use & z(x, t),
where z(x,t), (X,t) € Gha.y) is the solution of the difference scheme (3.2), (4.1). We
may expect that the new solution z°(x, t) has an accuracy of O(t?) with respect to the
time variable. Thisistrue, aswill be shown in Section 6.3.
Moreover, in a similar way we can construct a difference approximation with a
convergence order higher than two (with respect to the time variable) and O(N~2 In? N)
with respect to the space variable e-uniformly (see Section 6.2).

6.2 Modified difference schemes of second-order accuracy in t

We denote by §,5z(x, t) the backward difference of order k:
dor Z(X, 1) = z(X, 1),

Sk Z(X, 1) = (8k_1t Z(X, ) — 8k_1¢ Z(X, t — 1)) /7,
(x,1) € G, t > kr, k> 1.

When constructing difference schemes of second-order accuracy in 7 in (6.2), instead
of (82/0t2)u(x, t) weuse 8,7 z(X, t), which isthe second divided difference of the solution
to the discrete problem (3.2), (4.1). On the mesh Gy, we consider the finite difference
scheme (3.2), writing

A2V (x, )= f(x, 1), (X, 1) € Gp, (6.3)
D, ) =¢(x,1), X, 1) € S.

Then for the boundary value problem (2.1) we now get for the difference equations for
t =7andt > 2t respectively:

p(x,t) 9%u
—(X
> ol

A@2Z?(x, 1) = f(x,t) + 0, t=r1, (6.4)
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X, t
A32Z?(x, 1) = f(x, 1) + % 8,2 (x, 1),  t>2r, (X, 1) € Gp,

Z2(x,1) = p(x, 1), x, 1) € Sh.
Here zD(x, t) is the solution of the discrete problem (6.3), (4.1), and the derivative
(92u/9t?)(x, 0) is obtained from equation (2.1a). We shall call 22 (x, t) the solution of
difference scheme (6.4), (6.3), (4.1) (or in short, (6.4), (4.1)).
For simplicity, in the remainder of this section we take ahomogeneousinitial condition:

0(x,00=0, xel0,1]. (6.5)

Under the homogeneous initial condition (6.5), the following estimate holds for the
solution of problem (6.4), (4.1)

lux, ) — 2@ | < M [N*ZInZ N +r2], (X, t) € Gh. (6.6)

THEOREM 3 Let condition (6.5) hold and assume in eguation (2.1) that a €
HE@2=D@G), ¢, p, f € HOF2G), 9 € HET(G), o > 4, n = Land let
condition (A.1) be satisfied for n = 1. Then for the solution of difference scheme (6.4),
(4.1) the estimate (6.6) holds.

The proof of thistheorem isfound in Section A.2 of the Appendix.

6.3 Adifference scheme of third-order accuracy intime

Analogously we construct a difference scheme with third-order accuracy in z. On the mesh
G we consider the difference scheme

32 a3u
A322% (1) = 0,1 + pox, ) (CllfmU(X, 0 +Crt’- 50|,  t=r,
(6.79)
3 d2u ,d3u
43227060 = 10,0 + P, D | Caat o5 (%, 0+ Copt? o5, 0) |, t=2r,
22220 D=0 D+p0 D) (CarrspZ®(x, 1) + Cazr?z (0, D) . t2 3,
x,1t) € Gp,

290 =ex ), (X1 e S,

Here z(x, t) and 2@ (x, t) are the solutions of problems (6.3), (4.1) and (6.4), (4.1)
respectively, the derivatives (32/0t2)u(x, 0), (33/0t3)u(x, 0) are obtained from equation
(2.13), and the coefficients Cjj are determined below. They are chosen such that the
following conditions are satisfied

au 32u ,9%u 3
ﬁ(X,t)=8fu(X, t)+C11rW(X,t — 1)+ Caot W(X’t - 1)+ 0(17),
2 3

ou a“u »0°U 3
ﬁ(x, t) =8fu(x, t) + C21fw(x,t — 2'[) + C22T F(X,t — 2'[) + O(T ),

au
ﬁ(x, t) =8¢U(X, t) 4+ Ca178,7U(X, t) + Caa12857uU(X, t) + O(3).
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It follows that
Ci1=Cxn=Ca =1/2, Cio=Cz=1/3, Cx =5/6. (6.7b)

Wesshall call z® (x, t) the solution of the difference scheme (6.7), (6.4), (6.3), (4.1) (or
in short, (6.7), (4.1)).
Again we assume the homogeneous initial condition

o(x,0) =0, f(x,00=0, xel01]. (6.8)

Under condition (6.8) the following estimate holds for the solution of difference
scheme (6.7), (4.1)

u =22 D <M [N2IN+ 23], (0 eGn. 6.9)

THEOREM 4 Let conditions (6.8) hold and assume in equation (2.1) that a €
Het-D(@G) ¢, p, f € HH2-I2G), 9 € H@2M(G), &« > 4, n = 2 and let
condition (A.1) be satisfied with n = 2. Then for the solution of scheme (6.7), (4.1) the
estimate (6.9) isvaid.

The proof of Theorem 4 is given in Section A.3 of the Appendix.

In a similar way we could construct difference schemes with an arbitrary high order of
accuracy
O(N72In° N + "1, n> 2.

7. Numerical resultsfor the time-accur ate schemes
The solution of the problem in the half-strip,
LepyVx, t) =0, 0 < X < o0, 0<t<T, (7.0

V(0,t) =t 0<t<T, V(x,0) =0, 0< X < 00,

isgiven by

8 6 4 2
X X X X 2X
V(x,t)=erfc t4+ —t24+ 34 t4 7.2
*x.0) <2sﬁ> (168088 Tagel Tt Tzt (7.2)

2 7 5 3
_iexp(;_);t) ( X 12 4 9x £3/2 4 37x t5/2+ﬂt7/2)_
£

JT 840¢7 14065 42¢3 35¢

We consider the model problem

Lepyux,t) =0, (x,1) € G,

(7.3)
u(x,t) = Viza (X, 1), x,t) e S

Then the function V7.2 (x, t) is the solution of problem (7.3).
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The solution has a boundary layer character, and at the point x = 1, V(x,t) is
exponentialy small in¢ for ¢ — 0.

According to Theorems 3 and 4, the difference schemes (6.4), (4.1) and (6.7), (4.1)
converge respectively with order 2 and 3 with respect to r. To demonstrate this effect
numerically, we consider the schemes (6.3), (4.1); (6.4), (4.1) and (6.7), (4.1) for problem
(7.3). We solve problem (5.1), using the schemes (6.3), (4.1); (6.4), (4.1) and (6.7), (4.1)
for various values of N, K and ¢.

As the solution of the boundary value problem (7.3) has a boundary layer on the left-
hand side, for its solution we use the locally condensed mesh

Gy =@ x @, (7.4)

wherea™ = @™ (o) isaspecial mesh, condensed in the neighbourhood of the left-hand
side of the interval [0, 1]; o is a parameter depending on & and N. The mesh @ ™ (o) is
constructed as in Section 4, with the understanding that there is now only one boundary
layer. We take o = min[ 1/2, me InN ], where m is an arbitrary positive number. Then
for the solution z of the discrete problem (3.2), (7.4) we have the estimate:

Ut —z(x, 1) < M (N‘zlnz N + z), x.t) € Gy. (7.5)

For the solution zV of the problem (6.3), ( bneq.7.4) we have the following estimate:
lux,t) —zPx, 1] < M (N_zln2N+r), x 1) eG. (7.6)

For the solution z@ of the problem (6.4), (7.4), where z((x, t) is the solution of
problem (6.3), (7.4), the following estimate holds:

lux. ) —z@x. | < M (N’ZlnzN—i—rz), x.t) e G, (7.7)

For the solution z® of the discrete problem (6.7), (7.4), where 2@ (x, t) and 2D (x, 1)
are the solutions of problems (6.4), (7.4) and (6.3), (7.4) respectively, the following
estimate holds:

lux,t) —z®x, ] < M (N_Zln2 N + 13), x, 1) e G, (7.8)

The results from numerical experiments for the above model problem are given in Tables
2-5.

We know that the error consists of two contributions: one caused by the discretization
of the time derivative and the other by the space derivative (put briefly, the time and space
errors). From theory we know that the order of convergence is one for z, and two for h.
This dependence can be observed from the error tables, in regions where one component
of error is negligible compared with the other. Thus, to see first-order convergencein t,
we should consider the errors where the contribution from the discretization of the space
derivativeisrelatively small. Referring to Table 2, these errors are in the upper-right corner
of thetable.



108 P. W. HEMKER ETAL.

TABLE 2
Table of errors E(N, K, &) for scheme (6.3), (7.4). E(N, K, ¢) is defined by (5.2), where
z(x,t) = Zgé.)s) (X, 1), U (X, t) = V(72 (X, 1), Gy = 6:;'2)7_4).

N

e K 8 16 32 64 128 256 512 1024 2048
1 8 336-2 3342 3332 3332 3332 3332 3332 3332 3332
16 179-2 1752 1742 1742 1742 1742 1742 1742 1742
32 949-3 902-3 8903 887-3 8873 8863 8863 8863 8863
64 517-3 4653 452-3 4493 4483 448-3 4483 4483 4483
128 297-3 2433 2303 2263 2253 2253 2253 2253 2253
25 1863 1313 1173 1143 1133 1133 1133 1133 1133
512 130-3 7514 6124 577-4 5684 5664 5654 5664 5654
1024  1:02-3 470-4 3304 2944 2864 2834 2834 2834 2834
2048 8854 329-4 1884 1534 1444 142-4 142-4 1414 1414
272 8 576-2 487-2 4652 4612 4602 4592 4592 4592 459-2
16 366-2 2682 2422 2372 2352 2342 2342 2342 2342
32 268-2 1552 1272 1212 1192 1182 1182 1182 1182
64 2032 9703 6873 6193 6003 5963 5953 5953 594-3
128 1762 6813 3943 3223 3043 2993 2983 2983 2983
256 162-2 5353 2463 1743 1553 1513 150-3 149-3 1493
512 1552 4623 173-3 9944 8084 762-4 7504 T47-4 T47-4
1024 151-2 426-3 1363 621-4 4354 3894 3774 3744 3744
2048 150-2 407-3 117-3 4354 2494 2024 191-4 1884 1874
24 8 724-2 6682 5322 487-2 4652 4612 4602 4592 4592
16 566-2 467-2 3262 2682 2422 2372 2352 2342 2342
32 487-2 3652 2192 1552 1272 1212 1192 1182 1182
64 448-2 3142 1652 9703 687-3 619-3 6003 596-3 5953
128 4282 2882 1382 6813 3943 3223 3043 2993 2983
256  419-2 2752 1242 5353 246-3 1743 1553 151-3 150-3
512 414-2 2682 1172 462-3 1733 9944 8084 762-4 7504
1024 4112 2652 1142 4263 1363 6214 4354 3894 3774
2048 4102 2632 112-2 4073 1173 4354 2494 2024 1914
2% 8 724-2 6682 5322 4922 4702 4622 4602 4602 4592
& 16 566-2 467-2 3262 2722 2472 2382 2352 2352 2342
2-8 32 4-87-2 3652 2192 1582 1322 1232 1202 1192 1182
64 448-2 3142 1652 1002 7333 640-3 6093 599-3 5096-3
128 4282 2882 1382 7133 4403 3443 3133 3023 2993
256 419-2 2752 1242 5683 2923 1963 1643 1543 1513
512 414-2 2682 1172 4953 2193 1223 8974 7934 7604
1024 4112 2652 1142 4583 1823 8484 5244 4204 3874
2048 4102 2632 112-2 4403 1633 6624 3384 2334 2014

We say that the global error has the correct behaviour with respect to time if, by
doubling K for fixed N, we obtain the ratio of the errors not less than some fixed number
mg. If e.g., for Table 2 we take mg = 1-7, which is sufficiently close to two, the domains
with correct and incorrect behaviour of the errors are separated by diagonals going in the
direction from upper |eft to lower right.

From Table 2 we see that, for ¢ = 1, the domain with the correct behaviour of the error
is almost the whole table, except for afew values in the lower-left corner. As ¢ decreases,
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TABLE 3
Table of errors E(N, K, &) for scheme (6.4), (7.4). E(N, K, ¢) is defined by (5.2), where
z(x,t) = 252?4) (X, 1), U (X, t) = V(72 (X, 1), Gy = 6:;'2)7_4).

N

e K 8 16 32 64 128 256 512 1024 2048
1 8 664-3 6183 6043 6013 6003 6003 6003 6003 6003
16 2333 1803 166-3 1633 1623 162-3 161-3 161-3 161-3
32 116-3 6:06-4 4644 4304 421-4 4194 4194 4184 4184
64 850-4 2944 1534 1184 1094 1074 1074 1064 1064
128 771-4 2154 7385 3865 2975 2755 2705 2685 2685
256 752-4 1954 5385 1855 9646 7436 6886 6746 6706
512 747-4 190-4 4875 1345 4586 2386 1826 1696 1656
1024 7454 1884 4755 1225 3326 1116 5657 4337 4017
2048 7454 1884 4725 1185 3006 7937 2677 1567 1357
272 8 2132 1082 7983 7273 7093 7053 7043 7043 7043
16 1652 5723 2843 211-3 192-3 1883 1873 186-3 186-3
32 152-2 436-3 146-3 7264 541-4 4954 4834 4804 4804
64 149-2 4013 1113 3704 1844 1374 1254 1234 1224
128 1482 3923 102-3 2794 9285 4625 3455 3165 3095
256  148-2 3903 9944 2504 6995 2325 1166 8666 7936
512 1482 3893 9884 2514 6415 1755 5836 2926 2196
1024 1482 389-3 9874 2494 6275 1615 4406 1496 7807
2048 148-2 3893 9864 2494 6235 1575 4046 1156 4507
24 8 449-2 321-2 1762 1082 7983 727-3 7093 7053 7043
16 419-2 2772 1282 572-3 2843 2193 192-3 1883 1873
32 412-2 266-2 1152 436-3 1463 7264 5414 4954 4834
64 410-2 2632 1112 4013 111-3 3704 1844 1374 1254
128 4092 2622 1102 3923 1023 2794 9285 4625 3455
256  409-2 262-2 1102 3903 994 2564 6995 2325 1165
512 409-2 2622 1102 3893 9884 2514 6415 1755 5836
1024 409-2 262-2 1102 3893 987-4 2494 6275 161-5 4406
2048 409-2 2622 1102 3893 9864 2494 6235 1575 4046
2% 8 449-2 321-2 1762 111-3 8343 750-3 7183 7083 7053
& 16 4192 2772 1282 6043 3273 2343 2013 1913 1883
2-8 32 412-2 266-2 1152 469-3 1923 9554 6304 5264 4934
64 410-2 2632 1112 4333 1573 5984 2734 1684 1364
128 4092 2622 110-2 4253 1483 5074 1824 7735 4475
256 409-2 262-2 1102 4223 146-3 4844 1594 5445 2185
512 409-2 2622 1102 4223 1453 4784 1534 4865 1615
1024 4092 262-2 1102 422-3 1453 477-4 152-4 472-5 1465
2048 409-2 2622 1102 422-3 1453 4774 151-4 4685 1435

the domain of correct behaviour of the error tends to decrease. This can be explained by
the relative increasing influence of the space error for smaller . In the case of ¢ < 276
the domain of correct behaviour of the error no longer changes. Thus, we can observe
e-uniform convergence, of order (approximately) one with respect to time.

Now we consider Table 3, which gives the errors for z?(x, t), that is the corrected
solution. Note that, in principle, the time correction does not improve the accuracy with
respect to the space variable. By the correction we improve only the part of the error that
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is caused by the approximation of the time derivative, depending on =, and we observe
the improvement only when the space-dependent contribution of the error is small in
comparison with the time-dependent part. For ¢ = 1 the space error is relatively small,
and the improvement in accuracy can be seen immediately.

Analysing Table 3, we define the domain where the error behaviour is correct, e.g.,
by the value mpg = 3 (see above). This number is larger than 2 and smaller than 4,
corresponding to the second-order convergence in . When the parameter ¢ decreases,
the domain with correct behaviour of the error decreases. Note that, for small ¢, the part
of Table 3 with the correct behaviour of the error is much reduced because the effect
of the space error is relatively large for the corrected solution. Again, for ¢ < 275 the
errors for the same N, K do not change. Conseguently, we see the g-uniform effect of the
improvement of accuracy, and the order of convergence with respect to the time-step size
is about two.

In Table 4 we recognize the third-order time-accuracy described in Section 6.3. We
define the domain of correct behaviour of the error by mg = 5 (for third-order convergence
we should take 4 < mg < 8). For ¢ = 1 we see that the errors for the same N, K in
Table 4 are smaller than those in Tables 2 and 3. (In the same way that the errors in
Table 3 are smaller than thosein Table 2.)

Therefore, the time error in Table 4 is much smaller than in Tables 2 and 3. With
decreasing ¢ the domain of correct behaviour of the error decreases and, for given N and
K, practically disappears if ¢ < 2. Note that the errors in Table 4 for ¢ < 27 are
close to the errorsin Table 3 in that part of the table where the errors almost do not vary
with doubling K. In the remainder the errorsin Table 4 are smaller than the corresponding
errorsin Table 3.

Comparing Tables 2, 3 and 4, we see that: (i) for al ¢ and N, by K = 16 the errors
for z®(x, t) are smaller than those for 2V (x, t) at K = 2048; (ii) the order of ¢-uniform
convergence with respect to 7 is higher for scheme (6.4), (7.4) than that for scheme (6.3),
(7.4), and the order for scheme (6.7), (7.4) is higher than for scheme (6.4), (7.4); (iii) the
order of convergence with respect to  increases for the functions z) (x, t) with increasing
k; (iv) for sufficiently large N the order of convergence with respect to the space variable
is nearly two, uniformly in e.

Because the space error is smaller for ¢ = 1, this case shows more clearly the effect
of the defect correction in time. Hence, for illustration, Table 5 is derived from the values
E(Ni, Kj, ) shownin Tebles 2, 3 and 4, for ¢ = 1. In Table 5 we give the ratios

r = E(N;, Kj, D)/E(N;, Kj+1, 1) > mo,

where the value mg is chosen as above. From Table 5 we see that the function E(N, K, &)
for N = 2048 for zV decreases by afactor 2, when K is doubled, for z? it decreases by
afactor 4, and for z® by afactor of 8 for not too large K .

When the parameter ¢ increases, a similar behaviour of the function E(N, K, ¢) is
observed, however for much larger values of the number N. From the tables we can see
that the order of convergence with respect to the space variable is close to 2, uniformly in
¢, for sufficiently large N.

Comparing the present results with those in Hemker et al. (1997) we can make the
following remarks: (i) for the model problem (7.3), the errors for the schemes (6.3), (7.4);
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TABLE 4
Table of errors E(N, K, &) for scheme (6.7), (7.4). E(N, K, ¢) is defined by (5.2), where
z(x,t) = 252?7) (X, 1), U (X, t) = V(72 (X, 1), Gy = 6:;'2)7_4).

N

e K 8 16 32 64 128 256 512 1024 2048
1 8 1643 111-3 9664 9324 9234 9214 9204 9204 9204
16 861-4 3084 1674 1324 1234 121-4 1214 1214 1204
32 760-4 2034 6235 1705 1835 1615 1555 1545 1535
64 7-47-4  190-4 4905 1375 4836 2636 2086 1956 191-6
128 7454 1884 4735 1205 3146 9317 3997 2787 2517
256 7454 1884 4715 1185 2926 7187 2047 116-7 1017
512 7454 1884 4715 1175 2906 692-7 1817 1067 9248
1024 7454 1884 4715 1175 2896 6887 1787 1057 9138
2048 7454 1884 4715 1175 2896 6887 1787 1057 911-8
272 8 159-2 501-3 2133 1403 1213 1173 1163 1153 1153
16 149-2 404-3 1133 394 2104 1634 152-4 149-4 1484
32 1-48-2 391-3 1003 2674 8105 3445 2285 1995 1925
64 148-2 3893 9884 251-4 6465 1805 6316 3416 2696
128 1482 3893 9864 2494 6255 1595 4226 1336 6317
256  148-2 3893 9864 2494 6235 1565 396-6 1076 6317
512 1482 3893 9864 2494 6225 1565 3936 1046 3497
1024 1482 389-3 9864 2494 6225 155 3926 1036 3457
2048 148-2 3893 9864 2494 6225 1565 3926 103-6 3457
24 8 416-2 2722 1212 5013 2133 1403 1213 1173 1163
16 410-2 2632 1122 4043 1133 394 2104 1634 1524
32 409-2 2622 1102 391-3 1003 2674 8105 3445 2285
64 409-2 262-2 1102 3893 9884 2514 6465 1805 6316
128 4092 2622 1102 3893 9864 2494 6255 1595 422-6
256  409-2 262-2 1102 3893 9864 2494 6235 1565 396-6
512 409-2 2622 1102 3893 9864 2494 6225 15-5 3936
1024 409-2 262-2 1102 3893 9864 2494 6225 1565 3926
2048 409-2 2622 1102 3893 9864 2494 6225 1565 392-6
2% 8 416-2 2722 121-2 5343 2593 1633 1303 1203 117-3
& 16 410-2 2632 1122 4363 1603 6224 2994 1944 162-4
2-8 32 4:09-2 2622 1102 4233 1473 4954 1704 6555 3305
64 409-2 262-2 1102 4223 1453 4794 1544 4915 1655
128 4092 2622 110-2 422-3 1453 4774 151-4 4705 1455
256 409-2 262-2 1102 4223 1453 4764 1514 4685 1425
512 409-2 2622 1102 4223 1453 4764 151-4 4675 1425
1024 4092 262-2 1102 422-3 1453 4764 151-4 4675 1425
2048 409-2 2622 1102 422-3 1453 4764 151-4 4675 1425

(6.4), (7.4) and (6.7), (7.4) are comparable with those in Hemker et al. (1997), but now we
can show results for a wider range of parameters N and K; (ii) in Hemker et al. (1997)
defect correction schemes were considered for sequences of embedded time-refined meshes
(meshesthat were refined in thetime variabl€). Here we use asingle time mesh, both for the
corrected solution and for the auxiliary solutions. This essentially simplifies the structure
of the schemes and consequently their computer implementation. Finally: (iii) in Hemker
et al. (1997) an order of convergence with respect to the space variable of O(N~ InN)
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TABLES
Table of the ratiosr = E(N;, Kj, D/E(N;, Kj41,1) > mg. Here E(N;, Kj, 1) isthe
error in zK (x, t), k = 1, 2, 3, asin Tables 2-4; mg is as described in the text. Where the
space error dominates, r < mg isindicated by .

N
k K 8 16 32 64 128 256 512 1024 2048
1 8 188 191 192 192 192 192 192 192 192
16 188 194 195 196 19 19 196 19 196
32 184 194 197 198 198 198 198 198 198
64 174 191 197 198 199 199 199 199 199

128 * 185 195 198 199 199 199 199 199
256 * 175 192 198 199 200 200 200 200
512 * * 186 196 199 200 200 200 200
1024 * * 175 192 198 199 200 200 200
2 8 * 343 364 370 371 372 372 372 372
16 * * 357 378 384 38 38 38 386
32 * * 303 364 38 391 393 393 393
64 * * * 306 368 389 39 397 397
128 * * * * 309 371 392 398 400
256 * * * * * 313 377 399 406
512 * * * * * * 323 389 412
1024 * * * * * * * * *
3 8 * * 578 705 748 760 763 764 764
16 * * * * 676 755 778 784 785
32 * * * * * 611 745 790 802
64 * * * * * * 522 700 763
128 * * * * * * * * *
256 * * * * * * * * %
512 * * * * * * * * *
1024 * * * * * * * * *

could be shown theoretically. Here, with the simpler defect correction schemes, a better
theoretical order of convergence for the space variable, O(N—2 In? N), is achieved.

8. Conclusions

In this paper we showed a possible defect correction procedure that can easily be
implemented in order to improve the time accuracy, whilst still retaining e-uniform second-
order accuracy in the space discretization, for a parabolic PDE.

The approximation error consists of two components. One is due to the discretization
of the space variable and the other is due to the time discretization. The defect correction
process only improves the accuracy with respect to the time and does not change the
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approximation with respect to the space variable. Therefore, by application of the defect
correction, the principal part of the total error becomes that due to the approximation of
the space variable.

By using the defect correction we are able to increase the accuracy of the approximate
solution essentially, i.e. from 1st to 2nd and 3rd order in 7. In the present paper we use the
same time mesh for the corrected solution and for the auxiliary solutions. Therefore the
structure of the present schemes is much simpler than that of those introduced in Hemker
et al. (1997). Numerical results illustrate that, also in practice, the order of convergence
with respect to the space variable is close to two.
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Appendix
A.1 Estimates of the solution and its derivatives

In this appendix we rely on the a priori estimates for the solution of problem (2.1) on the
domain G = D x [0, T], and its derivatives as derived for elliptic and parabolic equations
in Shishkin (1987, 1992).

Wedenoteby H ) (G) = H *%/2(G) the Holder space, where« isan arbitrary positive
number (Ladyzhenskaya & Ural’tseva, 1973). We suppose that the functions f (x, t) and
(X, t) satisfy compatibility conditions at the corner points, so that the solution of the
boundary value problem is smooth for every fixed value of the parameter ¢.

For simplicity, we assume that at the corner points S N'S; the following conditions
hold

ak ko
XK p(X, 1) = —atkow(x, t) =0, k4 2ko < [a] + 2n, (A1)
8k+k0
mf(X,t)ZO, K+ 2ko < [a] +2n -2,

where [«] is the integer part of a number o, @ > 0, n > 0is an integer. We also suppose
that [o] +2n > 2.

Using interior a priori estimates and estimates up to the boundary for the regular
function U(&,t) (cf. Ladyzhenskaya & Urad'tseva, 1973), where T(£,t) = u(x(é€),t),
£ = x/e, wefind for (x, t) € G the estimate

ux, )| < Me X, k+2ko<2n+4, n=0. (A.2)

ak+k0
‘axk dtko

This estimate holds, for example, for
ue H @G, v >0, (A.3)

where v is some small nhumber.

For example, (A.3) is guaranteed for the solution of (2.1) if the coefficients satisfy
aec H2-D(@G) ¢, p, f e HE22G), ¢ € HE2(G), o > 4, n > 0and
condition (A.1) isfulfilled.

In fact we need a more accurate estimate than (A.2). Therefore, we represent the
solution of the boundary value problem (2.1) in the form of the sum

u(x, t) = U(x, t) + W(x, t), (x,t) € G, (A.4)

where U (x, t) represents the regular part, and W (X, t) the singular part, i.e. the parabolic
boundary layer. The function U (x, t) is the smooth solution of equation (2.1a) satisfying
condition (2.1b) for t = 0. For example, under suitable assumptions for the data of
the problem, we can consider the solution of the Dirichlet boundary value problem for
equation (2.1a) smoothly extended to the domain G" (where G'isa sufficiently large
neighbourhood of G). On the domain G the coefficients and theinitial value of the extended
problem are the same as for (2.1). Then the function U (x, t) isthe restriction (on G) of the
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solution to the extended problem, and U € H @4V (G), v > 0. The function W(x, t)
isthe solution of aboundary value problem for the parabolic equation

LopyW(x,t) =0, X, 1) € G, (A.5)

W(x,t) = u(x,t) —U(x,1t), x,t) e S

If (A.1) istruethen W e H@*+4+v)(G). Now, for the functions U (x, t) and W(x, t) we
derive the estimates

ak+k0
‘WU“U‘ sM (A.6)
and
8k+k0 . .
axkatkow(x t)‘ Me ™" exp(—=ma 77T (X, ¥)), (A7)

(x,t) € G, K+ 2ko < 2n+4,

wherer (X, y) is the distance between the point x € [0, 1] and the set y which represents
the endpoints of the segment [0, 1], m(a.7) is a sufficiently small, positive number. The
estimates (A.6) and (A.7) hold, for example, when

U, W e H @+4)(G), v > 0. (A.8)

The inclusions (A.8) are guaranteed if a € H©@t=1(G), ¢, p, f € HE@F=2(G),
¢ € H@2"(G), o > 4,n > 0 and condition (A.1) is fulfilled. We summarize these
results in the following theorem.

THEOREM 5 Assume in equation (2.1) that a € H©@2-D@G), ¢, p, f ¢
H @+20-2(G), ¢ € H @*t2)(G), a > 4, n > 0and let condition (A.1) be fulfilled. Then,
for the solution, u(x, t), of problem (2.1), and for its components in the representation
(A.4), it follows that u, U, W e H @+2"(G) and that the estimates (A.2), (A.6), (A.7)
hold.

The proof of the theorem is similar to the proof in Shishkin (1992), where the equation

£ a(x t) (x t) — c(x, Hu(x, t) — p(x, t) (x t)y= f(x,1)

was considered.

A.2 Theproof of Theorem 3

Let us show that the function & z(x, t), where z(x, t) = zs.3)(X, t) is the solution of the
difference problem (6.3), approximates the function 8z u(x, t) e-uniformly. For simplicity
we assume a(x, t) to be constant on G. The function &; z(x, t) is the solution of the
difference problem

Angdzix,t) = fagxt),  (xt)eGH, (A.93)

Sz, 1) = pag (1), (1) e S (A.9b)
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Here
G =Ghnitzki),  G¥=chnit>ki,  =sl\6l k=1
An9)dez(X,t) = { 823.57)? —C(X, ) — pe(x, t) — P(x, ) (Sf} srz(x, 1),
fia.9 (X, t) = fr(X, t) + ce(X, )z(X, 1),
vaox D=gx.t), x=0d  (x.t) el
_ 0 _ 1 _ - 1
('O(AQ)(X7 t) _(p(Ag)(X) =T [Z(X, T) (p(xq O)] ) t= T, (X9 t) € é} ’

(X, 1) = v(X,t —1).

The function su(x, t) = [u(x,t) — u(x,t — )]/7, (X,t) € G, t > t isthe solution
of the differential problem

La10)dtu(x, t) = fa10(x, 1),  (x, 1) € G, (A.109)
Stu(x, t) = gat0 (X, t),  (x,t) e I (A.10b)
Here
G _Gnit>k, GN=cGnitsky, =M\ cM  k>1,
5 0% 3 3
La.100tu(X,t) =¢ aﬁ —C(X, t) — p(x, t) — p(x,t)ﬁat—u(x, t),

9
fia.10)(X, t) = fg(X, t) + ce(X, Hu(x, t) + pe(X, t) (3—?(& t) — Sgu(x, t)) ,

pa10(X. D) =g(x,t), x=0.d  (x,t)esH
P10 =00 100 =1 [ux. 1) —p(x,0)], t=7. (x,t)est

Let us estimate
P 100 = Pag () = T tw(X, 1),

where
w(X,t) = u(x, t) — z(x, 1), (X, t) € Gp.

The function w(X, t) isthe solution of the problem
Az oX, 1) = (Aw3 — L) uXx,t), (X,t) € Gp,
w(X,t) =0, x,t) e &.

The above assumptions and Theorem 5 lead to the estimate of the truncation error

(463 — Leo)uex b <M[N"HnN+], (.1 € Gn,
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Using the maximum principle we estimate w (X, t)
o, )] < M [N_llnN—i—r]t, (X, t) € Gh.
Further, for the derivatives we proceed similarly. On the boundary we have
Bu(x, T) = 8206 D] = [0 1000 — 9 (0 <M [NHnN 47|,

xtesl t=r,

i.e. the function 8rz(x, t) approximates sfu(x, t) e-uniformly. Now, it is easy to see that
the difference problem (A.9) approximates the solution of the differential equation for the
divided difference (A.10). Thus, using the same argument as above, we derive the estimate

Su(x,t) — szou | < MIN“TInN+ 7], b e G
h

Now, for the 2nd difference derivative we show that under condition (6.5) the function
8ot (X, t) approximates the function 5 u(x, t) e-uniformly on the set GEZ]. So, the
functions §5;z(x, t) and S,u(X, t) are solutions of the equations

Apandxz(x, t) = fa1n(x, ), x,t) € G, (A.119)

La2dzuxt) = fai,t),  (xt) e G, (A.123)

The equations are found by applying the operator §¢ to equations (A.9a), (A.10a). At the
left and right boundary the following conditions are satisfied:

Sz, ) = parn(x. 1),  (x,) e §3, (A.11b)
Sxux, D) = oA (X, 1),  (x.t) e g2, (A.12b)
where
oa1n (Gt =ex(x, 1), x=0d,  (x,t e (A.11c)
ppa1n(X,t) = w(%,ll) (X) = 8423 (X, 1), t =2z, x,t) 5[0,12],
A1) (X, 1) = (X, 1), x=0,d, x,t) e 94, (A.12c)
P12 (X 1) = 9% 10 (X) =8xux. 1), t=2r,  (x,H)ed
First we estimate
Pa12)(X) — 911 (X) = Szr U(X, 1) — 8z Z(X, 1), t =27

For this purpose we write the function u(x, t) in a Taylor expansion for t

ux, t) = a® 0t +a@ (x)t? + va(x, t) = uld(x, t) + va(x, t), x,t) € G, (A.13)
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where the coefficientsa® (x), a®(x) should be determined. Inserting u(x, t), in its form
(A.13), into equation (2.1a) we come to the systems

—p(x, 0aP(x) = f(x,0),
—2p(x, 0)a® (x) + Zaa—za(l)(x) — <c(x 0) — 9 (X 0)> a<1>(x)—3f(x 0)
pex. £ Xz T ot

from which the functions a®® (x), a® (x) are found successively. The function vo(x, t) is
the solution of the boundary value problem

Lanvax,t) = fa1g(x,t) = f(x, 1) — Lapu@(x,1), x,t)eG, (A.14

v2(X, 1) = @A 12 (X, 1) = p(x, 1) —ul@(x, 1), x,1) €S

Estimating f(a.14)(X, t) and ¢(a.14)(X, t), and using the maximum principle we derive the
estimate .
lva(x, )| < Mt3, (x,t) € G. (A.15)

Further, we have to construct the function z(x, t) in the form
2(x, 1) = (b{V () + b P ()0t + b{? 0t + v (x, 1)
=zl 0 +v)x, 1),  (x1) e,

i.e. as an expansion in powers of 7 and t. Inserting z(x, t) into equation (6.3), we arrive
at the equations
—p(x. 0bg” () = (x,0),

92 ] 9
—2p(x, 0)bg? (x) + ezaﬁbﬁ(x) — (c(x, 0) + — p(X, 0)) bP () = — f(x,0),
X ot ot
b? ) +bP(x) = 0.

So, we have
23x, t)y =ul@x, t) + bP)tt, (X, t) € Gh. (A.16)

The function v2h (X, t) isthe solution of the discrete boundary value problem
Aeave D)= fainx ) = f(x, 1) — 46323 (x, 1), (X,1) € Gh, (A.17)
v (6D =17 (X, ) = p(x, 1) — 28 (x, 1), (X.1) € S,

Taking into account estimates of the functions fa 17)(X, t) and ¢(a.17)(X, t), we derive the
estimate o
W (x, 0] < M [N*llnN +t]t2, (X, 1) € Gh. (A.18)

By virtue of relations (A.15), (A.16), (A.18) the following inequality isvalid:

| ‘P(?A,lz) x) — ‘p(?A.ll) (%) | = | Soru(X, 1) — dxz(X, 1) | (A.19)
<M [N‘llnN+r], x,t) € Gh,  t=2r
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We continue by estimating d,u(x, t) — dz(X, t) for t > 2r. Note that the functions
SpU(X, t) and d-52(X, t) are solutions of differential and difference equations, obtained
from equations (2.1) and (6.3) respectively by applying the operator §5. Moreover, the
difference equation for §5z(X, t) approximates the differential equation for §yu(x, t) e-
uniformly. On the boundary §,, for x = 0 or x = 1, we have Sxu(x,t) = Sxz(X, t).
Taking into account estimate (A.19) we find

| 50U(X, 1) — Sx2(X, 1) | < M [N*lln N + r] : (A.20)
(x,t) € Gp, t > 2.
Taking into account (6.5) we easily see

| (A3 — Lep)ux,t) | < M[N"2InN + ], X#o0,d—o,
| (A3 — Lep)ux,t)| < M[mint, )N"LInN+7], x=0, d—o0,
(x,t) € Gp.
Proceeding in the same way aswe did to obtain (A.20), we obtain the estimates

| seucx. t) — 8z P (x. ) [ < M [N*ZInZN +r], x,t) eGh,  t>1.
| 8pu(x, ) =5z P (x, 1) | < M [N‘zln N + r] . () eGn  t=27 (A21)
lux,t) —zZ@x, )| < M [N*ZInZN—i-rZ], (x,t) € Gp.

This completes the proof.
Now, as a direct consequence of the theorem, we make two remarks to prepare the
proof of Theorem 4

REMARK 6 In the above we have found (A.22) for k = 1. In completely the same way
we derive this bound for k = 2, so that we obtain

6 u(x, 1) — 820 (x. 1) | < M [N’Zlnz N + rk] , (A.22)

(X, t) € Gp, t > 21, k<2

REMARK 7 Making use of (A.22), similar to the derivation of estimate (A.21), we also
find
|85 u(x, 1) — 85 20 (x, 1) | < M [N-2|n2 N + r] : (A.23)
(x,t) € Gp, t > 3r.

We briefly indicate the differences with the proof given above for (A.21). To estimate the
difference between 65 u(X, t) and §35 z(x, t) for t = 37 we represent the function u(x, t)
(with condition (6.8)) in the form

ux, ) =a@)t2 + a® ot3 + v3(x, tHy=ul¥l(x, t) + va(x, t), x,t) € G,
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and the function z(x, t) in the form
2, 1) = ul¥x, t) + O 07 + b 0Tt + bP (0Tt + v (x, 1)

=B 0 +ofx, ), (x,1) € Gp.

The coefficients of these expansions are found using equations (2.1) and (6.3) respectively.
For the coefficients we have the system

—p(x, 0a®(x) = % f(x,0),

32 9 B
— (©) 2 @ xy — @ gy — o-1
3p(x, 0)a*(x) + & az 3 (X) <C(x,0)+2at p(X, 0)>a (x)=2 atf(x’o)’

b ) +a@(x) =0,

—2p(X, O)bl(Z)(x) + % p(x, 0)a@(x) + 3p(x, 0)a®(x)
0 @ 2. 9%
+ (—ﬁ p(x, 0) — c(X, 0)) bV (x)+e¢ aﬁbl (x) =0,

—bPx) —a® ) +bP(x) = 0.

The unknown functions a@, a®, b(ll), bf), b(zl) can be found successively. For the
functions va(x, t) and v,o[‘(x, t) the following estimates are derived

lva(x, ) [ <Mt (x,t) €G,

[wB O [<M[N2I®N+t]t%, () eGn.

For these inequalities and the expression for z13l(x, t) it follows that (A.23) holds &-
uniformly for t = 3¢. The remainder of the proof of the estimate (A.23) repeats, with
small variations, the proof of the estimate (A.21).

A.3 Theproof of Theorem4
Notice that, if for the functions 2P (x, 1), 2@ (x, t) the following relations hold

‘53fu(x,t)—33fz<l>(x,t)‘ <M [N—2|n2N+r], x,t) € Gp,  t=3r,
(A.24)
‘azfu(x, t) — 5522 (x, 1) ‘ <M [N—Zln2 N + 12] . xbheGn  t>2r

then for the difference u(x, t) — z®(x, t) = 0@ (x, t) we have the following

‘A(@g)w(s)(x, t) ‘ <M [N_Zlnz N -+ 13] 1) G,
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0@ (x,t) =0, x,1) € S
Hence we have

ux.t) — 2@, ) ’ <M [N—Zln2 N + r3], (X, 1) € Gh.

Thus, for the proof of the theorem it is sufficient to show inequalities (A.24). These
inequalities follow from (A.22), (A.23). Thus we have proved Theorem 4.



