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In this paper we study the discrete approximation of a Dirichlet problem on an interval for
a singularly perturbed parabolic PDE. The highest derivative in the equation is multiplied
by an arbitrarily small parameterε. If the parameter vanishes, the parabolic equation
degenerates to a first-order equation, in which only the time derivative remains. For small
values of the parameter, boundary layers may appear that give rise to difficulties when
classical discretization methods are applied. Then the error in the approximate solution
depends on the value ofε. An adapted placement of the nodes is needed to ensure that the
error is independent of the parameter value and depends only on the number of nodes in the
mesh. Special schemes with this property are calledε-uniformly convergent. In this paper
suchε-uniformly convergent schemes are studied, which combine a difference scheme and
a mesh selection criterion for the space discretization.

Except for a small logarithmic factor, the order of convergence is one and two with
respect to the time and space variables, respectively. Therefore, it is of interest to develop
methods for which the order of convergence with respect to the time variable is increased.
In this paper we develop schemes for which the order of convergence in time can be
arbitrarily large if the solution is sufficiently smooth. To obtain uniform convergence, we
use a mesh with nodes that are condensed in the neighbourhood of the boundary layers.
To obtain a better approximation in time, we use auxiliary discrete problems on the same
time-mesh to correct the difference approximations. In this sense, the present algorithm is
an improvement over a previously published one. To validate the theoretical results, some
numerical results for the new schemes are presented.
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1. Introduction

In this paper we study ε-uniform schemes for time-dependent singular perturbation
problems. For a general discussion of ε-uniform schemes for singular perturbation
problems we refer to Doolan et al. (1980), Shishkin (1992), Hemker et al. (1997), Morton
(1996), Roos et al. (1996). In earlier papers (Farrell et al., 1996a, b, c; Hemker et al., 1997)
we have introduced and analysed ε-uniformly convergent difference schemes for singularly
perturbed boundary value problems for elliptic and parabolic equations. If the problem
data are sufficiently smooth, for the parabolic equations without convection terms, the
order of ε-uniform convergence for the scheme that was studied is O(N−2 ln2 N + K −1),
where N and K denote, respectively, the number of intervals in the space and time
discretization. For this scheme the amount of computational work is primarily determined
by the time discretization, which is of first-order accuracy only. The difficulty for the
singular perturbation problem, however, lies essentially in the space direction where we
have second-order accuracy. Therefore, it is natural to search for a method that has the same
order of accuracy for both variables. To this end, we want to improve the accuracy with
respect to the time step, without essentially increasing the amount of computational work.
The improvement of the accuracy in time, maintaining ε-uniform convergence, by means
of a defect correction technique was also studied in Hemker et al. (1997). In that paper,
higher-order backward differences were used to obtain a better approximation of the time
derivative. To determine the derivatives, finite difference schemes on a sequence of finer
time-meshes were used. Therefore, the implementation of the schemes in Hemker et al.
(1997) appeared somewhat cumbersome. In the present paper we develop a new approach,
also based on the defect correction principle, but which is easier to implement and analyse,
as it only uses a single time-mesh, which is the same for all auxiliary problems.

By this method we are able to achieve the same order of accuracy in both variables.
Moreover, we present a method which can achieve a higher order of accuracy with respect
to the time variable. Thus, the accuracy of this method is restricted essentially by the
second-order accuracy in space, which is the natural limit set by the character of the
problem.

2. The class of boundary value problems studied

On the domain G = (0, 1) × (0, T ], with boundary S = G \ G we consider the following
singularly perturbed parabolic equation with Dirichlet boundary conditions†:

L(2.1)u(x, t) ≡ ε2 ∂

∂x

(
a(x, t)

∂u

∂x
(x, t)

)
− c(x, t)u(x, t) (2.1a)

−p(x, t)
∂u

∂t
(x, t) = f (x, t), (x, t) ∈ G,

u(x, t) = ϕ(x, t), (x, t) ∈ S. (2.1b)

For S = S0 ∪ S1, we distinguish the lateral boundary S1 = {(x, t) : x = 0 or x = 1,
0 � t � T }, and the initial boundary S0 = {(x, t) : x ∈ [0, 1], t = 0}. In (2.1b), a(x, t),

† The notation is such that the operator L(a.b) is first introduced in equation (a.b).
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c(x, t), p(x, t), f (x, t), (x, t) ∈ G, and ϕ(x, t), (x, t) ∈ S are sufficiently smooth and
bounded functions which satisfy

0 < a0 � a(x, t), 0 < p0 � p(x, t), c(x, t) � 0, (x, t) ∈ G. (2.1c)

The real parameter ε may take any small positive value, say

ε ∈ (0, 1]. (2.1d)

When the parameter ε tends to zero in (2.1a), layers appear in the solution in the
neighbourhood of the lateral boundary, which are described by an equation of parabolic
type (parabolic boundary layers). If an additional first-order term b(x, t)(∂u(x)/∂x) was
present in (2.1a) then we would see a boundary layer at the outflow boundary, that would
be described by an ordinary differential equation (an ordinary boundary layer).

3. An arbitrary non-uniform mesh

To solve problem (2.1) we first consider a classical finite difference method on a (possibly)
non-uniform mesh. On the set G we introduce the rectangular mesh

Gh = ω × ω0, (3.1)

where ω is the (possibly) non-uniform mesh of nodal points, xi , in [0, 1], ω0 is a uniform
mesh on the interval [0, T ]; N and K are the numbers of intervals in the meshes ω and ω0
respectively. We define τ = T/K , hi = xi+1 −xi , h = maxi hi , h � M/N , Gh = G ∩Gh ,
Sh = S ∩ Gh .

Here and below we denote by M (or m) sufficiently large (or small) positive constants
which do not depend on the value of the parameter ε or on the difference operators.

For problem (2.1) we use the difference scheme (Samarski, 1989)

Λ(3.2)z(x, t) = f (x, t), (x, t) ∈ Gh, (3.2a)

z(x, t) = ϕ(x, t), (x, t) ∈ Sh . (3.2b)

Here

Λ(3.2)z(x, t) ≡ ε2δx̂

(
ah(x, t)δx z(x, t)

)
− c(x, t)z(x, t) − p(x, t)δt z(x, t),

δx̂

(
ah(xi , t) δx z(xi , t)

)
= 2(hi−1 + hi )−1

(
ah(xi+1, t)δx z(xi , t) − ah(xi , t)δx z(xi , t)

)
,

ah(xi , t) = a
(
(xi−1 + xi )/2, t

)
,

δx z(xi , t) = (hi−1)−1
(

z(xi , t) − z(xi−1, t)
)

,

δx z(xi , t) = (hi )−1
(

z(xi+1, t) − z(xi , t)
)

,

δt z(xi , t) = τ−1
(

z(xi , t) − z(xi , t − τ)
)

,
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δx z(x, t) and δx z(x, t), δt z(x, t) are the forward and backward differences, and the
difference operator and δx̂ (a

h(x, t)δx z(x, t)) is an approximation of the operator
∂
∂x (a(x, t) ∂

∂x u(x, t)) on the non-uniform mesh.
From Samarski (1989) we know that the difference scheme (3.2), (3.1) is monotone.

By means of the maximum principle and taking into account estimates of the derivatives
(see Theorem 5 in the Appendix) we find that the solution of the difference scheme (3.2),
(3.1) converges for a fixed value of the parameter ε:

|u(x, t) − z(x, t)| � M(ε−1 N−1 + τ), (x, t) ∈ Gh . (3.3)

This error bound for the classical difference scheme is clearly not ε-uniform.
The proof of (3.3) follows the lines of the classical convergence proof for monotone

difference schemes (cf. Samarski, 1989; Shishkin, 1992). Taking into account an a priori
estimate for the solution (Appendix, Section A.1), this results in the following theorem.

THEOREM 1 Let the estimate (A.2) hold for the solution of (2.1). Then, for a fixed value
of the parameter ε, the solution of (3.2), (3.1) converges to the solution of (2.1) with an
error bound given by (3.3).

4. The ε-uniformly convergent method

In this section we discuss an ε-uniformly convergent method for (2.1) by taking a special
mesh, condensed in the neighbourhood of the boundary layers. The location of the nodes
is derived from a priori estimates of the solution and its derivatives. The way to construct
the mesh for problem (2.1) is the same as in Shishkin (1992) and Hemker et al. (1997).
Specifically, we take

G
∗
h = ω ∗(σ ) × ω0, (4.1)

where ω0 is the uniform mesh with step-size τ = T/K , i.e. ω0 = ω0(3.1), and ω ∗ = ω ∗(σ )

is a special piecewise uniform mesh depending on the parameter σ ∈ R, which depends
on ε and N . We take σ = σ(4.1)(ε, N ) = min(1/4, mε ln N ), where m = m(4.1) is an
arbitrary positive number. The mesh ω ∗(σ ) is constructed as follows. The interval [ 0, 1 ]
is divided into three parts [ 0, σ ], [ σ, 1−σ ], [ 1−σ, 1 ], 0 < σ � 1/4. In each part we use
a uniform mesh, with N/2 subintervals in [ σ, 1 − σ ] and with N/4 subintervals in each
interval [ 0, σ ] and [ 1 − σ, 1 ].

THEOREM 2 If the solution of problem (2.1) satisfies the conditions of Theorem 5
(Appendix), then the solution of (3.2), (4.1) converges ε-uniformly to the solution of (2.1)
and the following estimate holds:

|u(x, t) − z(x, t)| � M(N−2 ln2 N + τ), (x, t) ∈ G
∗
h . (4.2)

The proof of this theorem can be found in Shishkin (1992).

5. Numerical results

To see the effect of the special mesh in practice, we take the model problem

L(5.1)u(x, t) ≡ ε2 ∂2u

∂x2
(x, t) − ∂u

∂t
(x, t)= f (x, t), (x, t) ∈ G, (5.1)
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u(x, t) = ϕ(x, t), (x, t) ∈ S,

where
f (x, t) = 4t3, (x, t) ∈ G, ϕ(x, t) = 0, (x, t) ∈ S.

In Hemker et al. (1997) we compared the numerical results for scheme (3.2) on the
uniform mesh G

u
h = Gh (3.1), where ω = ωu is a uniform mesh, and on the special mesh

(4.1), adapted to the value ε. For T = 1 we presented the error E(N , K , ε), defined by

E(N , K , ε) = max
(x,t)∈Gh

|z(x, t) − u∗(x, t)|. (5.2)

Here u∗(x, t) is the piecewise linear interpolation obtained from the numerical solution
z(x, t) on an adapted mesh with parameters σ = min(1/4, 2ε ln N ), N = K = 512.
Notice that no special interpolation is needed for the time variable.

In Hemker et al. (1997) we compared results for the uniform and adapted mesh, and
we showed the errors E(N , N , ε), for N = 2k , K = 3, . . . , 8, for various values of ε.
From the results in Hemker et al. (1997), ε-uniform convergence can be observed but it
is difficult to analyse the order of ε-uniform convergence in space and in time. Therefore,
here we want to supplement these numerical results with values for E(N , N 2, ε), for the
adapted mesh, for the same N and for the same values of ε.

In Table 1 we give the results for the same scheme (3.2), (4.1) but with K = N 2.
Here we can clearly see that, in accordance with estimate (4.2), the order of convergence
is O(N−2 ln2 N + K −1). For large N the order of convergence 2 (resp. 1) with respect to
the space and time variable corresponds with the theoretical results.

TABLE 1
Errors E(N , N 2, ε) for the special method (3.2), (4.1). In this table the function E(N , N 2, ε) is
defined by (5.2), but now z(x, t) in (5.2) is the solution of (3.2), (4.1) with m = 2, Gh = G

∗
h ,

N = 512. In the last row E(N ) gives the maximum over each column.

ε \ N 8 16 32 64 128 256
1.0 7.411E−04 1.843E−04 4.588E−05 1.133E−05 2.698E−06 5.395E−07
2−1 7.305E−03 1.821E−03 4.538E−04 1.121E−04 2.669E−05 5.338E−06
2−2 2.184E−02 5.459E−03 1.361E−03 3.362E−04 8.005E−05 1.601E−05
2−3 3.086E−02 1.150E−02 3.064E−03 7.699E−04 1.844E−04 3.699E−05
2−4 3.148E−02 3.433E−02 1.391E−02 3.630E−03 8.764E−04 1.760E−04
2−5 3.149E−02 3.827E−02 3.325E−02 1.434E−02 3.597E−03 7.292E−04

2−6–2−12 3.149E−02 3.796E−02 3.275E−02 1.358E−02 4.015E−03 1.683E−03

E(N ) 3.149E−02 3.827E−02 3.325E−02 1.434E−02 4.015E−03 1.683E−03

6. Improved time accuracy

6.1 A scheme based on defect correction

In this section we construct a new discrete method based on defect correction, which also
converges ε-uniformly to the solution of the boundary value problem, but with an order of
accuracy (with respect to τ ) higher than in (4.2).
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The idea is similar to that in Hemker et al. (1997). For the difference scheme (3.2),
(4.1) the error in the approximation of the partial derivative (∂/∂t) u(x, t) is caused by the
divided difference δt z(x, t) and is associated with the truncation error given by the relation

∂u

∂t
(x, t) − δt u(x, t)=2−1 τ

∂2u

∂t2
(x, t) − 6−1 τ 2 ∂3u

∂t3
(x, t − ϑ), (6.1)

where ϑ ∈ [0, τ ]. Therefore, with the notation from Section 3, we now use for the
approximation of (∂/∂t) u(x, t) the expression

δt u(x, t) + τδt t u(x, t)/2,

where δt t u(x, t) ≡ δt t u(x, t − τ). Notice that δt t u(x, t) is the second central divided
difference. We can evaluate a better approximation than (3.2a) by defect correction

Λ(3.2)z
c(x, t) = f (x, t) − 2−1 p(x, t)τ

∂2u

∂t2
(x, t), (6.2)

with x ∈ ω and t ∈ ω0, where ω and ω0 are as in (3.1); τ is the step-size of the mesh
ω0; zc(x, t) is the ‘corrected’ solution. Instead of (∂2/∂t2) u(x, t) we shall use δt t z(x, t),
where z(x, t), (x, t) ∈ Gh(4.1) is the solution of the difference scheme (3.2), (4.1). We
may expect that the new solution zc(x, t) has an accuracy of O(τ 2) with respect to the
time variable. This is true, as will be shown in Section 6.3.

Moreover, in a similar way we can construct a difference approximation with a
convergence order higher than two (with respect to the time variable) and O(N−2 ln2 N )

with respect to the space variable ε-uniformly (see Section 6.2).

6.2 Modified difference schemes of second-order accuracy in τ

We denote by δkt z(x, t) the backward difference of order k:

δ0t z(x, t) = z(x, t),

δkt z(x, t) = (
δk−1 t z(x, t) − δk−1 t z(x, t − τ)

)
/τ,

(x, t) ∈ Gh, t � kτ, k � 1.

When constructing difference schemes of second-order accuracy in τ in (6.2), instead
of (∂2/∂t2)u(x, t) we use δ2 t z(x, t), which is the second divided difference of the solution
to the discrete problem (3.2), (4.1). On the mesh Gh we consider the finite difference
scheme (3.2), writing

Λ(3.2)z
(1)(x, t) = f (x, t), (x, t) ∈ Gh, (6.3)

z(1)(x, t) = ϕ(x, t), (x, t) ∈ Sh .

Then for the boundary value problem (2.1) we now get for the difference equations for
t = τ and t � 2τ respectively:

Λ(3.2)z
(2)(x, t) = f (x, t) + p(x, t)

2
τ

∂2u

∂t2
(x, 0), t = τ, (6.4)
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Λ(3.2)z
(2)(x, t) = f (x, t) + p(x, t)

2
τ δ2 t z

(1)(x, t), t � 2τ, (x, t) ∈ Gh,

z(2)(x, t) = ϕ(x, t), (x, t) ∈ Sh .

Here z(1)(x, t) is the solution of the discrete problem (6.3), (4.1), and the derivative
(∂2u/∂t2)(x, 0) is obtained from equation (2.1a). We shall call z(2)(x, t) the solution of
difference scheme (6.4), (6.3), (4.1) (or in short, (6.4), (4.1)).

For simplicity, in the remainder of this section we take a homogeneous initial condition:

ϕ(x, 0) = 0, x ∈ [0, 1]. (6.5)

Under the homogeneous initial condition (6.5), the following estimate holds for the
solution of problem (6.4), (4.1)∣∣ u(x, t) − z (2)(x, t)

∣∣ � M
[

N−2 ln2 N + τ 2
]
, (x, t) ∈ Gh . (6.6)

THEOREM 3 Let condition (6.5) hold and assume in equation (2.1) that a ∈
H (α+2n−1)(G), c, p, f ∈ H (α+2n−2)(G), ϕ ∈ H (α+2n)(G), α > 4, n = 1 and let
condition (A.1) be satisfied for n = 1. Then for the solution of difference scheme (6.4),
(4.1) the estimate (6.6) holds.

The proof of this theorem is found in Section A.2 of the Appendix.

6.3 A difference scheme of third-order accuracy in time

Analogously we construct a difference scheme with third-order accuracy in τ . On the mesh
Gh we consider the difference scheme

Λ(3.2)z
(3)(x, t) = f (x, t) + p(x, t)

(
C11τ

∂2

∂t2
u(x, 0) + C12τ

2 ∂3u

∂t3
(x, 0)

)
, t = τ,

(6.7a)

Λ(3.2)z
(3)(x, t) = f (x, t) + p(x, t)

(
C21τ

∂2u

∂t2
(x, 0) + C22τ

2 ∂3u

∂t3
(x, 0)

)
, t = 2τ,

Λ(3.2)z
(3)(x, t)= f (x, t)+p(x, t)

(
C31τδ2 t z

(2)(x, t) + C32τ
2δ3 t z

(1)(x, t)
)

, t � 3τ,

(x, t) ∈ Gh,

z(3)(x, t) = ϕ(x, t), (x, t) ∈ Sh .

Here z(1)(x, t) and z(2)(x, t) are the solutions of problems (6.3), (4.1) and (6.4), (4.1)
respectively, the derivatives (∂2/∂t2)u(x, 0), (∂3/∂t3)u(x, 0) are obtained from equation
(2.1a), and the coefficients Ci j are determined below. They are chosen such that the
following conditions are satisfied

∂u

∂t
(x, t) = δt u(x, t) + C11τ

∂2u

∂t2
(x, t − τ) + C12τ

2 ∂3u

∂t3
(x, t − τ) + O(τ 3),

∂u

∂t
(x, t) = δt u(x, t) + C21τ

∂2u

∂t2
(x, t − 2τ) + C22τ

2 ∂3u

∂t3
(x, t − 2τ) + O(τ 3),

∂u

∂t
(x, t) = δt u(x, t) + C31τδ2 t u(x, t) + C32τ

2δ3 t u(x, t) + O(τ 3).
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It follows that

C11 = C21 = C31 = 1/2, C12 = C32 = 1/3, C22 = 5/6. (6.7b)

We shall call z(3)(x, t) the solution of the difference scheme (6.7), (6.4), (6.3), (4.1) (or
in short, (6.7), (4.1)).

Again we assume the homogeneous initial condition

ϕ(x, 0) = 0, f (x, 0) = 0, x ∈ [0, 1] . (6.8)

Under condition (6.8) the following estimate holds for the solution of difference
scheme (6.7), (4.1)∣∣u(x, t) − z(3)(x, t)

∣∣ � M
[

N−2 ln2 N + τ 3
]
, (x, t) ∈ Gh . (6.9)

THEOREM 4 Let conditions (6.8) hold and assume in equation (2.1) that a ∈
H (α+2n−1)(G), c, p, f ∈ H (α+2n−2)(G), ϕ ∈ H (α+2n)(G), α > 4, n = 2 and let
condition (A.1) be satisfied with n = 2. Then for the solution of scheme (6.7), (4.1) the
estimate (6.9) is valid.

The proof of Theorem 4 is given in Section A.3 of the Appendix.

In a similar way we could construct difference schemes with an arbitrary high order of
accuracy

O(N−2 ln2 N + τ n+1), n > 2.

7. Numerical results for the time-accurate schemes

The solution of the problem in the half-strip,

L(5.1)V (x, t) = 0, 0 < x < ∞, 0 < t � T, (7.1)

V (0, t) = t4, 0 < t � T, V (x, 0) = 0, 0 � x < ∞,

is given by

V (x, t)=erfc

(
x

2ε
√

t

) (
x8

1680ε8
+ x6

30ε6
t + x4

2ε4
t2 + 2x2

ε2
t3 + t4

)
(7.2)

− 1√
π

exp

(
−x2

4ε2t

) (
x7

840ε7 t1/2 + 9x5

140ε5
t3/2 + 37x3

42ε3
t5/2 + 93x

35ε
t7/2

)
.

We consider the model problem

L(5.1)u(x, t) = 0, (x, t) ∈ G,

u(x, t) = V(7.2)(x, t), (x, t) ∈ S.
(7.3)

Then the function V(7.2)(x, t) is the solution of problem (7.3).
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The solution has a boundary layer character, and at the point x = 1, V (x, t) is
exponentially small in ε for ε → 0.

According to Theorems 3 and 4, the difference schemes (6.4), (4.1) and (6.7), (4.1)
converge respectively with order 2 and 3 with respect to τ . To demonstrate this effect
numerically, we consider the schemes (6.3), (4.1); (6.4), (4.1) and (6.7), (4.1) for problem
(7.3). We solve problem (5.1), using the schemes (6.3), (4.1); (6.4), (4.1) and (6.7), (4.1)
for various values of N , K and ε.

As the solution of the boundary value problem (7.3) has a boundary layer on the left-
hand side, for its solution we use the locally condensed mesh

G
(∗)

h = ω (∗) × ω0, (7.4)

where ω(∗) = ω (∗)(σ ) is a special mesh, condensed in the neighbourhood of the left-hand
side of the interval [ 0, 1 ]; σ is a parameter depending on ε and N . The mesh ω (∗)(σ ) is
constructed as in Section 4, with the understanding that there is now only one boundary
layer. We take σ = min[ 1/2, mε ln N ], where m is an arbitrary positive number. Then
for the solution z of the discrete problem (3.2), (7.4) we have the estimate:

|u(x, t) − z (x, t)| � M
(

N−2 ln2 N + τ
)

, (x, t) ∈ G
(∗)

h . (7.5)

For the solution z(1) of the problem (6.3), ( bneq.7.4) we have the following estimate:∣∣u(x, t) − z (1)(x, t)
∣∣ � M

(
N−2 ln2 N + τ

)
, (x, t) ∈ G

(∗)

h . (7.6)

For the solution z(2) of the problem (6.4), (7.4), where z (1)(x, t) is the solution of
problem (6.3), (7.4), the following estimate holds:∣∣u(x, t) − z (2)(x, t)

∣∣ � M
(

N−2 ln2 N + τ 2
)

, (x, t) ∈ G
(∗)

h . (7.7)

For the solution z(3) of the discrete problem (6.7), (7.4), where z (2)(x, t) and z (1)(x, t)
are the solutions of problems (6.4), (7.4) and (6.3), (7.4) respectively, the following
estimate holds:∣∣u(x, t) − z (3)(x, t)

∣∣ � M
(

N−2 ln2 N + τ 3
)

, (x, t) ∈ G
(∗)

h . (7.8)

The results from numerical experiments for the above model problem are given in Tables
2–5.

We know that the error consists of two contributions: one caused by the discretization
of the time derivative and the other by the space derivative (put briefly, the time and space
errors). From theory we know that the order of convergence is one for τ , and two for h.
This dependence can be observed from the error tables, in regions where one component
of error is negligible compared with the other. Thus, to see first-order convergence in τ ,
we should consider the errors where the contribution from the discretization of the space
derivative is relatively small. Referring to Table 2, these errors are in the upper-right corner
of the table.
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TABLE 2
Table of errors E(N , K , ε) for scheme (6.3), (7.4). E(N , K , ε) is defined by (5.2), where

z(x, t) = z(1)
(6.3)

(x, t), u∗(x, t) = V(7.2)(x, t), Gh = G
(∗)
h(7.4).

N
ε K 8 16 32 64 128 256 512 1024 2048
1 8 3.36-2 3.34-2 3.33-2 3.33-2 3.33-2 3.33-2 3.33-2 3.33-2 3.33-2

16 1.79-2 1.75-2 1.74-2 1.74-2 1.74-2 1.74-2 1.74-2 1.74-2 1.74-2
32 9.49-3 9.02-3 8.90-3 8.87-3 8.87-3 8.86-3 8.86-3 8.86-3 8.86-3
64 5.17-3 4.65-3 4.52-3 4.49-3 4.48-3 4.48-3 4.48-3 4.48-3 4.48-3
128 2.97-3 2.43-3 2.30-3 2.26-3 2.25-3 2.25-3 2.25-3 2.25-3 2.25-3
256 1.86-3 1.31-3 1.17-3 1.14-3 1.13-3 1.13-3 1.13-3 1.13-3 1.13-3
512 1.30-3 7.51-4 6.12-4 5.77-4 5.68-4 5.66-4 5.65-4 5.66-4 5.65-4
1024 1.02-3 4.70-4 3.30-4 2.94-4 2.86-4 2.83-4 2.83-4 2.83-4 2.83-4
2048 8.85-4 3.29-4 1.88-4 1.53-4 1.44-4 1.42-4 1.42-4 1.41-4 1.41-4

2−2 8 5.76-2 4.87-2 4.65-2 4.61-2 4.60-2 4.59-2 4.59-2 4.59-2 4.59-2
16 3.66-2 2.68-2 2.42-2 2.37-2 2.35-2 2.34-2 2.34-2 2.34-2 2.34-2
32 2.58-2 1.55-2 1.27-2 1.21-2 1.19-2 1.18-2 1.18-2 1.18-2 1.18-2
64 2.03-2 9.70-3 6.87-3 6.19-3 6.00-3 5.96-3 5.95-3 5.95-3 5.94-3
128 1.76-2 6.81-3 3.94-3 3.22-3 3.04-3 2.99-3 2.98-3 2.98-3 2.98-3
256 1.62-2 5.35-3 2.46-3 1.74-3 1.55-3 1.51-3 1.50-3 1.49-3 1.49-3
512 1.55-2 4.62-3 1.73-3 9.94-4 8.08-4 7.62-4 7.50-4 7.47-4 7.47-4
1024 1.51-2 4.26-3 1.36-3 6.21-4 4.35-4 3.89-4 3.77-4 3.74-4 3.74-4
2048 1.50-2 4.07-3 1.17-3 4.35-4 2.49-4 2.02-4 1.91-4 1.88-4 1.87-4

2−4 8 7.24-2 6.68-2 5.32-2 4.87-2 4.65-2 4.61-2 4.60-2 4.59-2 4.59-2
16 5.66-2 4.67-2 3.26-2 2.68-2 2.42-2 2.37-2 2.35-2 2.34-2 2.34-2
32 4.87-2 3.65-2 2.19-2 1.55-2 1.27-2 1.21-2 1.19-2 1.18-2 1.18-2
64 4.48-2 3.14-2 1.65-2 9.70-3 6.87-3 6.19-3 6.00-3 5.96-3 5.95-3
128 4.28-2 2.88-2 1.38-2 6.81-3 3.94-3 3.22-3 3.04-3 2.99-3 2.98-3
256 4.19-2 2.75-2 1.24-2 5.35-3 2.46-3 1.74-3 1.55-3 1.51-3 1.50-3
512 4.14-2 2.68-2 1.17-2 4.62-3 1.73-3 9.94-4 8.08-4 7.62-4 7.50-4
1024 4.11-2 2.65-2 1.14-2 4.26-3 1.36-3 6.21-4 4.35-4 3.89-4 3.77-4
2048 4.10-2 2.63-2 1.12-2 4.07-3 1.17-3 4.35-4 2.49-4 2.02-4 1.91-4

2−6 8 7.24-2 6.68-2 5.32-2 4.92-2 4.70-2 4.62-2 4.60-2 4.60-2 4.59-2
& 16 5.66-2 4.67-2 3.26-2 2.72-2 2.47-2 2.38-2 2.35-2 2.35-2 2.34-2

2−8 32 4.87-2 3.65-2 2.19-2 1.58-2 1.32-2 1.23-2 1.20-2 1.19-2 1.18-2
64 4.48-2 3.14-2 1.65-2 1.00-2 7.33-3 6.40-3 6.09-3 5.99-3 5.96-3
128 4.28-2 2.88-2 1.38-2 7.13-3 4.40-3 3.44-3 3.13-3 3.02-3 2.99-3
256 4.19-2 2.75-2 1.24-2 5.68-3 2.92-3 1.96-3 1.64-3 1.54-3 1.51-3
512 4.14-2 2.68-2 1.17-2 4.95-3 2.19-3 1.22-3 8.97-4 7.93-4 7.60-4
1024 4.11-2 2.65-2 1.14-2 4.58-3 1.82-3 8.48-4 5.24-4 4.20-4 3.87-4
2048 4.10-2 2.63-2 1.12-2 4.40-3 1.63-3 6.62-4 3.38-4 2.33-4 2.01-4

We say that the global error has the correct behaviour with respect to time if, by
doubling K for fixed N , we obtain the ratio of the errors not less than some fixed number
m0. If e.g., for Table 2 we take m0 = 1.7, which is sufficiently close to two, the domains
with correct and incorrect behaviour of the errors are separated by diagonals going in the
direction from upper left to lower right.

From Table 2 we see that, for ε = 1, the domain with the correct behaviour of the error
is almost the whole table, except for a few values in the lower-left corner. As ε decreases,



ε-UNIFORM SCHEMES 109

TABLE 3
Table of errors E(N , K , ε) for scheme (6.4), (7.4). E(N , K , ε) is defined by (5.2), where

z(x, t) = z(2)
(6.4)

(x, t), u∗(x, t) = V(7.2)(x, t), Gh = G
(∗)
h(7.4).

N
ε K 8 16 32 64 128 256 512 1024 2048
1 8 6.64-3 6.18-3 6.04-3 6.01-3 6.00-3 6.00-3 6.00-3 6.00-3 6.00-3

16 2.33-3 1.80-3 1.66-3 1.63-3 1.62-3 1.62-3 1.61-3 1.61-3 1.61-3
32 1.16-3 6.06-4 4.64-4 4.30-4 4.21-4 4.19-4 4.19-4 4.18-4 4.18-4
64 8.50-4 2.94-4 1.53-4 1.18-4 1.09-4 1.07-4 1.07-4 1.06-4 1.06-4
128 7.71-4 2.15-4 7.38-5 3.86-5 2.97-5 2.75-5 2.70-5 2.68-5 2.68-5
256 7.52-4 1.95-4 5.38-5 1.85-5 9.64-6 7.43-6 6.88-6 6.74-6 6.70-6
512 7.47-4 1.90-4 4.87-5 1.34-5 4.58-6 2.38-6 1.82-6 1.69-6 1.65-6
1024 7.45-4 1.88-4 4.75-5 1.22-5 3.32-6 1.11-6 5.65-7 4.33-7 4.01-7
2048 7.45-4 1.88-4 4.72-5 1.18-5 3.00-6 7.93-7 2.67-7 1.56-7 1.35-7

2−2 8 2.13-2 1.08-2 7.98-3 7.27-3 7.09-3 7.05-3 7.04-3 7.04-3 7.04-3
16 1.65-2 5.72-3 2.84-3 2.11-3 1.92-3 1.88-3 1.87-3 1.86-3 1.86-3
32 1.52-2 4.36-3 1.46-3 7.26-4 5.41-4 4.95-4 4.83-4 4.80-4 4.80-4
64 1.49-2 4.01-3 1.11-3 3.70-4 1.84-4 1.37-4 1.25-4 1.23-4 1.22-4
128 1.48-2 3.92-3 1.02-3 2.79-4 9.28-5 4.62-5 3.45-5 3.16-5 3.09-5
256 1.48-2 3.90-3 9.94-4 2.50-4 6.99-5 2.32-5 1.16-6 8.66-6 7.93-6
512 1.48-2 3.89-3 9.88-4 2.51-4 6.41-5 1.75-5 5.83-6 2.92-6 2.19-6
1024 1.48-2 3.89-3 9.87-4 2.49-4 6.27-5 1.61-5 4.40-6 1.49-6 7.80-7
2048 1.48-2 3.89-3 9.86-4 2.49-4 6.23-5 1.57-5 4.04-6 1.15-6 4.50-7

2−4 8 4.49-2 3.21-2 1.76-2 1.08-2 7.98-3 7.27-3 7.09-3 7.05-3 7.04-3
16 4.19-2 2.77-2 1.28-2 5.72-3 2.84-3 2.19-3 1.92-3 1.88-3 1.87-3
32 4.12-2 2.66-2 1.15-2 4.36-3 1.46-3 7.26-4 5.41-4 4.95-4 4.83-4
64 4.10-2 2.63-2 1.11-2 4.01-3 1.11-3 3.70-4 1.84-4 1.37-4 1.25-4
128 4.09-2 2.62-2 1.10-2 3.92-3 1.02-3 2.79-4 9.28-5 4.62-5 3.45-5
256 4.09-2 2.62-2 1.10-2 3.90-3 9.94-4 2.56-4 6.99-5 2.32-5 1.16-5
512 4.09-2 2.62-2 1.10-2 3.89-3 9.88-4 2.51-4 6.41-5 1.75-5 5.83-6
1024 4.09-2 2.62-2 1.10-2 3.89-3 9.87-4 2.49-4 6.27-5 1.61-5 4.40-6
2048 4.09-2 2.62-2 1.10-2 3.89-3 9.86-4 2.49-4 6.23-5 1.57-5 4.04-6

2−6 8 4.49-2 3.21-2 1.76-2 1.11-3 8.34-3 7.50-3 7.18-3 7.08-3 7.05-3
& 16 4.19-2 2.77-2 1.28-2 6.04-3 3.27-3 2.34-3 2.01-3 1.91-3 1.88-3

2−8 32 4.12-2 2.66-2 1.15-2 4.69-3 1.92-3 9.55-4 6.30-4 5.26-4 4.93-4
64 4.10-2 2.63-2 1.11-2 4.33-3 1.57-3 5.98-4 2.73-4 1.68-4 1.36-4
128 4.09-2 2.62-2 1.10-2 4.25-3 1.48-3 5.07-4 1.82-4 7.73-5 4.47-5
256 4.09-2 2.62-2 1.10-2 4.22-3 1.46-3 4.84-4 1.59-4 5.44-5 2.18-5
512 4.09-2 2.62-2 1.10-2 4.22-3 1.45-3 4.78-4 1.53-4 4.86-5 1.61-5
1024 4.09-2 2.62-2 1.10-2 4.22-3 1.45-3 4.77-4 1.52-4 4.72-5 1.46-5
2048 4.09-2 2.62-2 1.10-2 4.22-3 1.45-3 4.77-4 1.51-4 4.68-5 1.43-5

the domain of correct behaviour of the error tends to decrease. This can be explained by
the relative increasing influence of the space error for smaller ε. In the case of ε � 2−6

the domain of correct behaviour of the error no longer changes. Thus, we can observe
ε-uniform convergence, of order (approximately) one with respect to time.

Now we consider Table 3, which gives the errors for z(2)(x, t), that is the corrected
solution. Note that, in principle, the time correction does not improve the accuracy with
respect to the space variable. By the correction we improve only the part of the error that
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is caused by the approximation of the time derivative, depending on τ , and we observe
the improvement only when the space-dependent contribution of the error is small in
comparison with the time-dependent part. For ε = 1 the space error is relatively small,
and the improvement in accuracy can be seen immediately.

Analysing Table 3, we define the domain where the error behaviour is correct, e.g.,
by the value m0 = 3 (see above). This number is larger than 2 and smaller than 4,
corresponding to the second-order convergence in τ . When the parameter ε decreases,
the domain with correct behaviour of the error decreases. Note that, for small ε, the part
of Table 3 with the correct behaviour of the error is much reduced because the effect
of the space error is relatively large for the corrected solution. Again, for ε � 2−6 the
errors for the same N , K do not change. Consequently, we see the ε-uniform effect of the
improvement of accuracy, and the order of convergence with respect to the time-step size
is about two.

In Table 4 we recognize the third-order time-accuracy described in Section 6.3. We
define the domain of correct behaviour of the error by m0 = 5 (for third-order convergence
we should take 4 < m0 < 8). For ε = 1 we see that the errors for the same N , K in
Table 4 are smaller than those in Tables 2 and 3. (In the same way that the errors in
Table 3 are smaller than those in Table 2.)

Therefore, the time error in Table 4 is much smaller than in Tables 2 and 3. With
decreasing ε the domain of correct behaviour of the error decreases and, for given N and
K , practically disappears if ε � 2−6. Note that the errors in Table 4 for ε � 2−6 are
close to the errors in Table 3 in that part of the table where the errors almost do not vary
with doubling K . In the remainder the errors in Table 4 are smaller than the corresponding
errors in Table 3.

Comparing Tables 2, 3 and 4, we see that: (i) for all ε and N , by K = 16 the errors
for z(3)(x, t) are smaller than those for z(1)(x, t) at K = 2048; (ii) the order of ε-uniform
convergence with respect to τ is higher for scheme (6.4), (7.4) than that for scheme (6.3),
(7.4), and the order for scheme (6.7), (7.4) is higher than for scheme (6.4), (7.4); (iii) the
order of convergence with respect to τ increases for the functions z(k)(x, t) with increasing
k; (iv) for sufficiently large N the order of convergence with respect to the space variable
is nearly two, uniformly in ε.

Because the space error is smaller for ε = 1, this case shows more clearly the effect
of the defect correction in time. Hence, for illustration, Table 5 is derived from the values
E(Ni , Kj , ε) shown in Tables 2, 3 and 4, for ε = 1. In Table 5 we give the ratios

r = E(Ni , Kj , 1)/E(Ni , Kj+1, 1) > m0,

where the value m0 is chosen as above. From Table 5 we see that the function E(N , K , ε)

for N = 2048 for z(1) decreases by a factor 2, when K is doubled, for z(2) it decreases by
a factor 4, and for z(3) by a factor of 8 for not too large K .

When the parameter ε increases, a similar behaviour of the function E(N , K , ε) is
observed, however for much larger values of the number N . From the tables we can see
that the order of convergence with respect to the space variable is close to 2, uniformly in
ε, for sufficiently large N .

Comparing the present results with those in Hemker et al. (1997) we can make the
following remarks: (i) for the model problem (7.3), the errors for the schemes (6.3), (7.4);



ε-UNIFORM SCHEMES 111

TABLE 4
Table of errors E(N , K , ε) for scheme (6.7), (7.4). E(N , K , ε) is defined by (5.2), where

z(x, t) = z(3)
(6.7)

(x, t), u∗(x, t) = V(7.2)(x, t), Gh = G
(∗)
h(7.4).

N
ε K 8 16 32 64 128 256 512 1024 2048
1 8 1.64-3 1.11-3 9.66-4 9.32-4 9.23-4 9.21-4 9.20-4 9.20-4 9.20-4

16 8.61-4 3.08-4 1.67-4 1.32-4 1.23-4 1.21-4 1.21-4 1.21-4 1.20-4
32 7.60-4 2.03-4 6.23-5 1.70-5 1.83-5 1.61-5 1.55-5 1.54-5 1.53-5
64 7.47-4 1.90-4 4.90-5 1.37-5 4.83-6 2.63-6 2.08-6 1.95-6 1.91-6
128 7.45-4 1.88-4 4.73-5 1.20-5 3.14-6 9.31-7 3.99-7 2.78-7 2.51-7
256 7.45-4 1.88-4 4.71-5 1.18-5 2.92-6 7.18-7 2.04-7 1.16-7 1.01-7
512 7.45-4 1.88-4 4.71-5 1.17-5 2.90-6 6.92-7 1.81-7 1.06-7 9.24-8
1024 7.45-4 1.88-4 4.71-5 1.17-5 2.89-6 6.88-7 1.78-7 1.05-7 9.13-8
2048 7.45-4 1.88-4 4.71-5 1.17-5 2.89-6 6.88-7 1.78-7 1.05-7 9.11-8

2−2 8 1.59-2 5.01-3 2.13-3 1.40-3 1.21-3 1.17-3 1.16-3 1.15-3 1.15-3
16 1.49-2 4.04-3 1.13-3 3.96-4 2.10-4 1.63-4 1.52-4 1.49-4 1.48-4
32 1.48-2 3.91-3 1.00-3 2.67-4 8.10-5 3.44-5 2.28-5 1.99-5 1.92-5
64 1.48-2 3.89-3 9.88-4 2.51-4 6.46-5 1.80-5 6.31-6 3.41-6 2.69-6
128 1.48-2 3.89-3 9.86-4 2.49-4 6.25-5 1.59-5 4.22-6 1.33-6 6.31-7
256 1.48-2 3.89-3 9.86-4 2.49-4 6.23-5 1.56-5 3.96-6 1.07-6 6.31-7
512 1.48-2 3.89-3 9.86-4 2.49-4 6.22-5 1.56-5 3.93-6 1.04-6 3.49-7
1024 1.48-2 3.89-3 9.86-4 2.49-4 6.22-5 1.56-5 3.92-6 1.03-6 3.45-7
2048 1.48-2 3.89-3 9.86-4 2.49-4 6.22-5 1.56-5 3.92-6 1.03-6 3.45-7

2−4 8 4.16-2 2.72-2 1.21-2 5.01-3 2.13-3 1.40-3 1.21-3 1.17-3 1.16-3
16 4.10-2 2.63-2 1.12-2 4.04-3 1.13-3 3.96-4 2.10-4 1.63-4 1.52-4
32 4.09-2 2.62-2 1.10-2 3.91-3 1.00-3 2.67-4 8.10-5 3.44-5 2.28-5
64 4.09-2 2.62-2 1.10-2 3.89-3 9.88-4 2.51-4 6.46-5 1.80-5 6.31-6
128 4.09-2 2.62-2 1.10-2 3.89-3 9.86-4 2.49-4 6.25-5 1.59-5 4.22-6
256 4.09-2 2.62-2 1.10-2 3.89-3 9.86-4 2.49-4 6.23-5 1.56-5 3.96-6
512 4.09-2 2.62-2 1.10-2 3.89-3 9.86-4 2.49-4 6.22-5 1.56-5 3.93-6
1024 4.09-2 2.62-2 1.10-2 3.89-3 9.86-4 2.49-4 6.22-5 1.56-5 3.92-6
2048 4.09-2 2.62-2 1.10-2 3.89-3 9.86-4 2.49-4 6.22-5 1.56-5 3.92-6

2−6 8 4.16-2 2.72-2 1.21-2 5.34-3 2.59-3 1.63-3 1.30-3 1.20-3 1.17-3
& 16 4.10-2 2.63-2 1.12-2 4.36-3 1.60-3 6.22-4 2.99-4 1.94-4 1.62-4

2−8 32 4.09-2 2.62-2 1.10-2 4.23-3 1.47-3 4.95-4 1.70-4 6.55-5 3.30-5
64 4.09-2 2.62-2 1.10-2 4.22-3 1.45-3 4.79-4 1.54-4 4.91-5 1.65-5
128 4.09-2 2.62-2 1.10-2 4.22-3 1.45-3 4.77-4 1.51-4 4.70-5 1.45-5
256 4.09-2 2.62-2 1.10-2 4.22-3 1.45-3 4.76-4 1.51-4 4.68-5 1.42-5
512 4.09-2 2.62-2 1.10-2 4.22-3 1.45-3 4.76-4 1.51-4 4.67-5 1.42-5
1024 4.09-2 2.62-2 1.10-2 4.22-3 1.45-3 4.76-4 1.51-4 4.67-5 1.42-5
2048 4.09-2 2.62-2 1.10-2 4.22-3 1.45-3 4.76-4 1.51-4 4.67-5 1.42-5

(6.4), (7.4) and (6.7), (7.4) are comparable with those in Hemker et al. (1997), but now we
can show results for a wider range of parameters N and K ; (ii) in Hemker et al. (1997)
defect correction schemes were considered for sequences of embedded time-refined meshes
(meshes that were refined in the time variable). Here we use a single time mesh, both for the
corrected solution and for the auxiliary solutions. This essentially simplifies the structure
of the schemes and consequently their computer implementation. Finally: (iii) in Hemker
et al. (1997) an order of convergence with respect to the space variable of O(N−1 ln N )



112 P. W. HEMKER ET AL.

TABLE 5
Table of the ratios r = E(Ni , Kj , 1)/E(Ni , Kj+1, 1) > m0. Here E(Ni , Kj , 1) is the
error in z(k)(x, t), k = 1, 2, 3, as in Tables 2–4; m0 is as described in the text. Where the

space error dominates, r < m0 is indicated by ∗.

N
k K 8 16 32 64 128 256 512 1024 2048
1 8 1.88 1.91 1.92 1.92 1.92 1.92 1.92 1.92 1.92

16 1.88 1.94 1.95 1.96 1.96 1.96 1.96 1.96 1.96
32 1.84 1.94 1.97 1.98 1.98 1.98 1.98 1.98 1.98
64 1.74 1.91 1.97 1.98 1.99 1.99 1.99 1.99 1.99
128 ∗ 1.85 1.95 1.98 1.99 1.99 1.99 1.99 1.99
256 ∗ 1.75 1.92 1.98 1.99 2.00 2.00 2.00 2.00
512 ∗ ∗ 1.86 1.96 1.99 2.00 2.00 2.00 2.00
1024 ∗ ∗ 1.75 1.92 1.98 1.99 2.00 2.00 2.00

2 8 ∗ 3.43 3.64 3.70 3.71 3.72 3.72 3.72 3.72
16 ∗ ∗ 3.57 3.78 3.84 3.85 3.86 3.86 3.86
32 ∗ ∗ 3.03 3.64 3.85 3.91 3.93 3.93 3.93
64 ∗ ∗ ∗ 3.06 3.68 3.89 3.95 3.97 3.97
128 ∗ ∗ ∗ ∗ 3.09 3.71 3.92 3.98 4.00
256 ∗ ∗ ∗ ∗ ∗ 3.13 3.77 3.99 4.06
512 ∗ ∗ ∗ ∗ ∗ ∗ 3.23 3.89 4.12
1024 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

3 8 ∗ ∗ 5.78 7.05 7.48 7.60 7.63 7.64 7.64
16 ∗ ∗ ∗ ∗ 6.76 7.55 7.78 7.84 7.85
32 ∗ ∗ ∗ ∗ ∗ 6.11 7.45 7.90 8.02
64 ∗ ∗ ∗ ∗ ∗ ∗ 5.22 7.00 7.63
128 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
256 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
512 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1024 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

could be shown theoretically. Here, with the simpler defect correction schemes, a better
theoretical order of convergence for the space variable, O(N−2 ln2 N ), is achieved.

8. Conclusions

In this paper we showed a possible defect correction procedure that can easily be
implemented in order to improve the time accuracy, whilst still retaining ε-uniform second-
order accuracy in the space discretization, for a parabolic PDE.

The approximation error consists of two components. One is due to the discretization
of the space variable and the other is due to the time discretization. The defect correction
process only improves the accuracy with respect to the time and does not change the
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approximation with respect to the space variable. Therefore, by application of the defect
correction, the principal part of the total error becomes that due to the approximation of
the space variable.

By using the defect correction we are able to increase the accuracy of the approximate
solution essentially, i.e. from 1st to 2nd and 3rd order in τ . In the present paper we use the
same time mesh for the corrected solution and for the auxiliary solutions. Therefore the
structure of the present schemes is much simpler than that of those introduced in Hemker
et al. (1997). Numerical results illustrate that, also in practice, the order of convergence
with respect to the space variable is close to two.
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Appendix

A.1 Estimates of the solution and its derivatives

In this appendix we rely on the a priori estimates for the solution of problem (2.1) on the
domain G = D × [0, T ], and its derivatives as derived for elliptic and parabolic equations
in Shishkin (1987, 1992).

We denote by H (α)(G) = H α,α/2(G) the Hölder space, where α is an arbitrary positive
number (Ladyzhenskaya & Ural’ tseva, 1973). We suppose that the functions f (x, t) and
ϕ(x, t) satisfy compatibility conditions at the corner points, so that the solution of the
boundary value problem is smooth for every fixed value of the parameter ε.

For simplicity, we assume that at the corner points S0 ∩ S1 the following conditions
hold

∂k

∂xk
ϕ(x, t) = ∂k0

∂tk0
ϕ(x, t) = 0, k + 2k0 � [α] + 2n, (A.1)

∂k+k0

∂xk ∂tk0
f (x, t) = 0, k + 2k0 � [α] + 2n − 2,

where [α] is the integer part of a number α, α > 0, n � 0 is an integer. We also suppose
that [α] + 2n � 2.

Using interior a priori estimates and estimates up to the boundary for the regular
function ũ(ξ, t) (cf. Ladyzhenskaya & Ural’ tseva, 1973), where ũ(ξ, t) = u(x(ξ), t),
ξ = x/ε, we find for (x, t) ∈ G the estimate∣∣∣∣ ∂k+k0

∂xk ∂tk0
u(x, t)

∣∣∣∣ � Mε−k, k + 2k0 � 2n + 4, n � 0. (A.2)

This estimate holds, for example, for

u ∈ H (2n+4+ν)(G), ν > 0, (A.3)

where ν is some small number.
For example, (A.3) is guaranteed for the solution of (2.1) if the coefficients satisfy

a ∈ H (α+2n−1)(G), c, p, f ∈ H (α+2n−2)(G), ϕ ∈ H (α+2n)(G), α > 4, n � 0 and
condition (A.1) is fulfilled.

In fact we need a more accurate estimate than (A.2). Therefore, we represent the
solution of the boundary value problem (2.1) in the form of the sum

u(x, t) = U (x, t) + W (x, t), (x, t) ∈ G, (A.4)

where U (x, t) represents the regular part, and W (x, t) the singular part, i.e. the parabolic
boundary layer. The function U (x, t) is the smooth solution of equation (2.1a) satisfying
condition (2.1b) for t = 0. For example, under suitable assumptions for the data of
the problem, we can consider the solution of the Dirichlet boundary value problem for
equation (2.1a) smoothly extended to the domain G

∗
(where G

∗
is a sufficiently large

neighbourhood of G). On the domain G the coefficients and the initial value of the extended
problem are the same as for (2.1). Then the function U (x, t) is the restriction (on G) of the
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solution to the extended problem, and U ∈ H (2n+4+ν)(G), ν > 0. The function W (x, t)
is the solution of a boundary value problem for the parabolic equation

L(2.1)W (x, t) = 0, (x, t) ∈ G, (A.5)

W (x, t) = u(x, t) − U (x, t), (x, t) ∈ S.

If (A.1) is true then W ∈ H (2n+4+ν)(G). Now, for the functions U (x, t) and W (x, t) we
derive the estimates ∣∣∣∣ ∂k+k0

∂xk ∂tk0
U (x, t)

∣∣∣∣ � M, (A.6)

and ∣∣∣∣ ∂k+k0

∂xk ∂tk0
W (x, t)

∣∣∣∣ � Mε−k exp(−m(A.7)ε
−1r(x, γ )), (A.7)

(x, t) ∈ G, k + 2k0 � 2n + 4,

where r(x, γ ) is the distance between the point x ∈ [0, 1] and the set γ which represents
the endpoints of the segment [0, 1], m(A.7) is a sufficiently small, positive number. The
estimates (A.6) and (A.7) hold, for example, when

U, W ∈ H (2n+4+ν)(G), ν > 0. (A.8)

The inclusions (A.8) are guaranteed if a ∈ H (α+2n−1)(G), c, p, f ∈ H (α+2n−2)(G),
ϕ ∈ H (α+2n)(G), α > 4, n � 0 and condition (A.1) is fulfilled. We summarize these
results in the following theorem.

THEOREM 5 Assume in equation (2.1) that a ∈ H (α+2n−1)(G), c, p, f ∈
H (α+2n−2)(G), ϕ ∈ H (α+2n)(G), α > 4, n � 0 and let condition (A.1) be fulfilled. Then,
for the solution, u(x, t), of problem (2.1), and for its components in the representation
(A.4), it follows that u, U, W ∈ H (α+2n)(G) and that the estimates (A.2), (A.6), (A.7)
hold.

The proof of the theorem is similar to the proof in Shishkin (1992), where the equation

ε2a(x, t)
∂2u

∂x2
(x, t) − c(x, t)u(x, t) − p(x, t)

∂u

∂t
(x, t) = f (x, t)

was considered.

A.2 The proof of Theorem 3

Let us show that the function δt z(x, t), where z(x, t) = z(6.3)(x, t) is the solution of the
difference problem (6.3), approximates the function δt u(x, t) ε-uniformly. For simplicity
we assume a(x, t) to be constant on G. The function δt z(x, t) is the solution of the
difference problem

Λ(A.9)δt z(x, t) = f(A.9)(x, t), (x, t) ∈ G [1]
h , (A.9a)

δt z(x, t) = ϕ(A.9)(x, t), (x, t) ∈ S [1]
h . (A.9b)
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Here

G
[k]
h = Gh ∩ {t � kτ } , G[k]

h = Gh ∩ {t > kτ } , S[k]
h = G

[k]
h \ G[k]

h , k � 1,

Λ(A.9)δt z(x, t) ≡
{

ε2a δx x̂ − č(x, t) − pt (x, t) − p̌(x, t) δt

}
δt z(x, t),

f(A.9)(x, t) = ft (x, t) + ct (x, t)z(x, t),

ϕ(A.9)(x, t) = ϕt (x, t), x = 0, d, (x, t) ∈ S[1]
h ,

ϕ(A.9)(x, t)=ϕ 0
(A.9)(x) ≡ τ−1 [ z(x, τ ) − ϕ(x, 0) ] , t = τ, (x, t) ∈ S[1]

h ,

v̌(x, t) = v(x, t − τ).

The function δt u(x, t) ≡ [u(x, t) − u(x, t − τ)]/τ , (x, t) ∈ G, t � τ is the solution
of the differential problem

L(A.10)δt u(x, t) = f(A.10)(x, t), (x, t) ∈ G[1], (A.10a)

δt u(x, t) = ϕ(A.10)(x, t), (x, t) ∈ S[1]. (A.10b)

Here

G
[k] = G ∩ {t � kτ } , G[k] = G ∩ {t > kτ } , S[k] = G

[k] \ G[k], k � 1,

L(A.10)δt u(x, t) ≡ ε2a
∂2

∂x2
− č(x, t) − pt (x, t) − p̌(x, t)

∂

∂t
δt u(x, t),

f(A.10)(x, t)= ft (x, t) + ct (x, t)u(x, t) + pt (x, t)

(
∂u

∂t
(x, t) − δt u(x, t)

)
,

ϕ(A.10)(x, t) = ϕt (x, t), x = 0, d, (x, t) ∈ S [1],

ϕ(A.10)(x, t)=ϕ 0
(A.10)(x) ≡ τ−1 [ u(x, τ ) − ϕ(x, 0) ] , t = τ, (x, t) ∈ S [1].

Let us estimate
ϕ 0

(A.10)(x) − ϕ 0
(A.9)(x) = τ−1ω(x, τ ),

where
ω(x, t) = u(x, t) − z(x, t), (x, t) ∈ Gh .

The function ω(x, t) is the solution of the problem

Λ(6.3) ω(x, t) = (Λ(6.3) − L(2.1)) u(x, t), (x, t) ∈ Gh,

ω(x, t) = 0, (x, t) ∈ Sh .

The above assumptions and Theorem 5 lead to the estimate of the truncation error∣∣(Λ(6.3) − L(2.1)

)
u(x, t)

∣∣ � M
[

N−1 ln N + τ
]
, (x, t) ∈ Gh .
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Using the maximum principle we estimate ω(x, t)

|ω(x, t)| � M
[

N−1 ln N + τ
]

t, (x, t) ∈ Gh .

Further, for the derivatives we proceed similarly. On the boundary we have∣∣δt u(x, τ ) − δt z(x, τ )
∣∣ = ∣∣ϕ 0

(A.10)(x) − ϕ 0
(A.9)(x)

∣∣ � M
[

N−1 ln N + τ
]
,

(x, t) ∈ S [1]
h , t = τ,

i.e. the function δt z(x, τ ) approximates δt u(x, τ ) ε-uniformly. Now, it is easy to see that
the difference problem (A.9) approximates the solution of the differential equation for the
divided difference (A.10). Thus, using the same argument as above, we derive the estimate∣∣δt u(x, t) − δt z(x, t)

∣∣ � M
[

N−1 ln N + τ
]
, (x, t) ∈ G

[1]
h .

Now, for the 2nd difference derivative we show that under condition (6.5) the function

δ2t z(x, t) approximates the function δ2t u(x, t) ε-uniformly on the set G
[2]
h . So, the

functions δ2t z(x, t) and δ2t u(x, t) are solutions of the equations

Λ(A.11)δ 2t z(x, t) = f(A.11)(x, t), (x, t) ∈ G[2]
h , (A.11a)

L(A.12)δ 2t u(x, t) = f(A.12)(x, t), (x, t) ∈ G[2]
h . (A.12a)

The equations are found by applying the operator δt to equations (A.9a), (A.10a). At the
left and right boundary the following conditions are satisfied:

δ2t z(x, t) = ϕ(A.11)(x, t), (x, t) ∈ S[2]
h , (A.11b)

δ2t u(x, t) = ϕ(A.12)(x, t), (x, t) ∈ S[2]
h , (A.12b)

where
ϕ(A.11)(x, t) = ϕ 2t (x, t), x = 0, d, (x, t) ∈ S[2]

h , (A.11c)

ϕ(A.11)(x, t) = ϕ 0
(A.11)(x) ≡ δ 2t z(6.3)(x, t), t = 2τ, (x, t) ∈ S[2]

h ,

ϕ(A.12)(x, t) = ϕ 2t (x, t), x = 0, d, (x, t) ∈ S[2], (A.12c)

ϕ(A.12)(x, t) = ϕ 0
(A.12)(x) ≡ δ 2t u (x, t), t = 2τ, (x, t) ∈ S[2].

First we estimate

ϕ 0
(A.12)(x) − ϕ 0

(A.11)(x) = δ2t u(x, t) − δ2t z(x, t), t = 2τ.

For this purpose we write the function u(x, t) in a Taylor expansion for t

u(x, t) = a(1)(x)t + a(2)(x)t2 + v2(x, t) ≡ u[2](x, t)+ v2(x, t), (x, t) ∈ G, (A.13)
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where the coefficients a(1)(x), a(2)(x) should be determined. Inserting u(x, t), in its form
(A.13), into equation (2.1a) we come to the systems

−p(x, 0)a(1)(x) = f (x, 0),

−2p(x, 0)a(2)(x) + ε2a
∂2

∂x2
a(1)(x) −

(
c(x, 0) − ∂

∂t
p(x, 0)

)
a(1)(x)= ∂

∂t
f (x, 0),

from which the functions a(1)(x), a(2)(x) are found successively. The function v2(x, t) is
the solution of the boundary value problem

L(2.1)v2(x, t) = f(A.14)(x, t) ≡ f (x, t) − L(2.1)u
[2](x, t), (x, t) ∈ G, (A.14)

v2(x, t) = ϕ(A.14)(x, t) ≡ ϕ(x, t) − u [2](x, t), (x, t) ∈ S.

Estimating f(A.14)(x, t) and ϕ(A.14)(x, t), and using the maximum principle we derive the
estimate

|v 2(x, t)| � Mt3, (x, t) ∈ G. (A.15)

Further, we have to construct the function z(x, t) in the form

z(x, t) = (b (1)
0 (x) + b (1)

1 (x)τ )t + b (2)
0 (x)t2 + v h

2 (x, t)

≡ z [2](x, t) + v h
2 (x, t), (x, t) ∈ Gh,

i.e. as an expansion in powers of τ and t . Inserting z(x, t) into equation (6.3), we arrive
at the equations

−p(x, 0)b (1)
0 (x) = f (x, 0),

−2p(x, 0)b (2)
0 (x) + ε2a

∂2

∂x2
b (1)

0 (x) −
(

c(x, 0) + ∂

∂t
p(x, 0)

)
b (1)

0 (x) = ∂

∂t
f (x, 0),

b (2)
0 (x) + b (1)

1 (x) = 0.

So, we have
z [2](x, t) = u [2](x, t) + b (1)

1 (x)τ t, (x, t) ∈ Gh . (A.16)

The function v h
2 (x, t) is the solution of the discrete boundary value problem

Λ(6.3)v
h
2 (x, t) = f(A.17)(x, t) ≡ f (x, t) − Λ(6.3)z

[2](x, t), (x, t) ∈ Gh, (A.17)

v h
2 (x, t) = ϕ(A.17)(x, t) ≡ ϕ(x, t) − z [2](x, t), (x, t) ∈ Sh .

Taking into account estimates of the functions f(A.17)(x, t) and ϕ(A.17)(x, t), we derive the
estimate ∣∣v h

2 (x, t)
∣∣ � M

[
N−1 ln N + t

]
t2, (x, t) ∈ Gh . (A.18)

By virtue of relations (A.15), (A.16), (A.18) the following inequality is valid:∣∣ ϕ 0
(A.12)(x) − ϕ 0

(A.11)(x)
∣∣ = ∣∣ δ2t u(x, t) − δ2t z(x, t)

∣∣ (A.19)

� M
[

N−1 ln N + τ
]
, (x, t) ∈ Gh, t = 2τ.
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We continue by estimating δ2t u(x, t) − δ2t z(x, t) for t > 2τ . Note that the functions
δ2t u(x, t) and δ2t z(x, t) are solutions of differential and difference equations, obtained
from equations (2.1) and (6.3) respectively by applying the operator δ2t . Moreover, the
difference equation for δ2t z(x, t) approximates the differential equation for δ2t u(x, t) ε-
uniformly. On the boundary Sh , for x = 0 or x = 1, we have δ2t u(x, t) = δ2t z(x, t).
Taking into account estimate (A.19) we find∣∣ δ2t u(x, t) − δ2t z(x, t)

∣∣ � M
[

N−1 ln N + τ
]
, (A.20)

(x, t) ∈ Gh, t � 2τ.

Taking into account (6.5) we easily see∣∣ (Λ(6.3) − L(2.1)) u(x, t)
∣∣ � M

[
N−2 ln2 N + τ

]
, x �= σ, d − σ,∣∣ (Λ(6.3) − L(2.1)) u(x, t)

∣∣ � M
[
min (t, 1)N−1 ln N + τ

]
, x = σ, d − σ,

(x, t) ∈ Gh .

Proceeding in the same way as we did to obtain (A.20), we obtain the estimates∣∣ δt u(x, t) − δt z
(1)(x, t)

∣∣ � M
[

N−2 ln2 N + τ
]
, (x, t) ∈ Gh, t � τ.

∣∣ δ2t u(x, t)−δ2t z
(1)(x, t)

∣∣ � M
[

N−2 ln N + τ
]
, (x, t) ∈ Gh, t � 2τ. (A.21)∣∣ u(x, t) − z(2)(x, t)

∣∣ � M
[

N−2 ln2 N + τ 2
]
, (x, t) ∈ Gh .

This completes the proof.
Now, as a direct consequence of the theorem, we make two remarks to prepare the

proof of Theorem 4

REMARK 6 In the above we have found (A.22) for k = 1. In completely the same way
we derive this bound for k = 2, so that we obtain∣∣ δ2t u(x, t) − δ2t z (k)(x, t)

∣∣ � M
[

N−2 ln2 N + τ k
]
, (A.22)

(x, t) ∈ Gh, t � 2τ, k � 2.

REMARK 7 Making use of (A.22), similar to the derivation of estimate (A.21), we also
find ∣∣ δ3t u(x, t) − δ3t z(1)(x, t)

∣∣ � M
[

N−2 ln2 N + τ
]
, (A.23)

(x, t) ∈ Gh, t � 3τ.

We briefly indicate the differences with the proof given above for (A.21). To estimate the
difference between δ3t u(x, t) and δ3t z(x, t) for t = 3τ we represent the function u(x, t)
(with condition (6.8)) in the form

u(x, t)=a(2)(x)t2 + a(3)(x)t3 + v3(x, t)≡u [3](x, t) + v3(x, t), (x, t) ∈ G,
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and the function z(x, t) in the form

z(x, t) = u [3](x, t) + (b(1)
1 (x)τ + b(1)

2 (x)τ 2)t + b(2)
1 (x)τ t2 + v h

3 (x, t)

≡ z [3](x, t) + v h
3 (x, t), (x, t) ∈ Gh .

The coefficients of these expansions are found using equations (2.1) and (6.3) respectively.
For the coefficients we have the system

−p(x, 0)a(2)(x) = ∂

∂t
f (x, 0),

−3p(x, 0)a(3)(x) + ε2a
∂2

∂x2
a(2)(x) −

(
c(x, 0) + 2

∂

∂t
p(x, 0)

)
a(2)(x) = 2 −1 ∂

∂t
f (x, 0),

−b (1)
1 (x) + a (2)(x) = 0,

−2p(x, 0)b (2)
1 (x) + ∂

∂t
p(x, 0)a (2)(x) + 3p(x, 0)a (3)(x)

+
(

− ∂

∂t
p(x, 0) − c(x, 0)

)
b (1)

1 (x) + ε 2a
∂2

∂x2
b (1)

1 (x) = 0,

−b (1)
2 (x) − a (3)(x) + b (2)

1 (x) = 0.

The unknown functions a(2), a(3), b(1)
1 , b(2)

1 , b(1)
2 can be found successively. For the

functions v3(x, t) and v h
3 (x, t) the following estimates are derived

| v 3(x, t) | � Mt4, (x, t) ∈ G,∣∣ v h
3 (x, t)

∣∣ � M
[

N−2 ln2 N + t
]

t3, (x, t) ∈ Gh .

For these inequalities and the expression for z[3](x, t) it follows that (A.23) holds ε-
uniformly for t = 3τ . The remainder of the proof of the estimate (A.23) repeats, with
small variations, the proof of the estimate (A.21).

A.3 The proof of Theorem 4

Notice that, if for the functions z (1)(x, t), z (2)(x, t) the following relations hold∣∣∣ δ3t u(x, t) − δ3t z (1)(x, t)
∣∣∣ � M

[
N−2 ln2 N + τ

]
, (x, t) ∈ Gh, t � 3τ,

(A.24)∣∣∣ δ2t u(x, t) − δ2t z
(2)(x, t)

∣∣∣ � M
[

N−2 ln2 N + τ 2
]
, (x, t) ∈ Gh, t � 2τ,

then for the difference u(x, t) − z (3)(x, t) ≡ ω(3)(x, t) we have the following∣∣∣ Λ(6.3)ω
(3)(x, t)

∣∣∣ � M
[

N−2 ln2 N + τ 3
]
, (x, t) ∈ Gh,
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ω(3)(x, t) = 0, (x, t) ∈ Sh .

Hence we have∣∣∣ u(x, t) − z (3)(x, t)
∣∣∣ � M

[
N−2 ln2 N + τ 3

]
, (x, t) ∈ Gh .

Thus, for the proof of the theorem it is sufficient to show inequalities (A.24). These
inequalities follow from (A.22), (A.23). Thus we have proved Theorem 4.


