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Abstract

In this paper we consider numerical methods for a singularly perturbed reaction–diffusion problem with a
discontinuous source term. We show that such a problem arises naturally in the context of models of simple
semiconductor devices. We construct a numerical method consisting of a standard finite difference operator and
a non-standard piecewise-uniform mesh. The mesh is fitted to the boundary and interior layers that occur in the
solution of the problem. We show by extensive computations that, for this problem, this method is parameter-
uniform in the maximum norm, in the sense that the numerical solutions converge in the maximum norm uniformly
with respect to the singular perturbation parameter. 2000 IMACS. Published by Elsevier Science B.V. All rights
reserved
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1. The semiconductor device equations

The stationary behaviour of semiconductor devices can be described by the nonlinear system of
second-order elliptic equations of van Roosbroeck [6]. In one dimension, for example, a simplep–n
diodeΩ = (0,1) with two Ohmic contacts, an anode atx = 0 and a cathode atx = 1, is governed by the
equations

ψ ′′ − ηeψ + ρe−ψ =−D, (1.1a)(
eψη′

)′ −R(ψ,η,ρ)= 0, (1.1b)(
e−ψρ ′

)′ −R(ψ,η,ρ)= 0 (1.1c)

onΩ with appropriate boundary conditions atx = 0 andx = 1. Hereψ is the electrostatic potential,
η andρ are the electron and hole concentrations in the Slotboom variables,D denotes the doping function
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andR denotes the recombination/generation rate. The doping functionD has a large jump at a point inΩ ,
called thep–n junction. The magnitude of the jump lies typically in the range from 1010 to 1020. Because
of this jump, the solutionsψ,η andρ have thin interior layers in a neighbourhood of thep–n junction.

In the numerical solution of this coupled nonlinear system, the iterative method of Gummel [2]
is normally used to decouple the system. The result of this decoupling is that in each iteration the
Poisson equation (1.1a) and the two continuity equations (1.1b), (1.1c) are solved sequentially. To solve
the decoupled Poisson equation (1.1a), we apply the Newton iterative method to the nonlinear term
−ηeψ + ρe−ψ which yields the following iterative process: given an initial guessψ0, for k = 0,1, . . .
until convergence, computeψk+1 by solving the equation

ψ ′′k+1−
(
ηeψk + ρe−ψk

)
(ψk+1−ψk)= ηeψk − ρe−ψk −D (1.2a)

with the Dirichlet boundary conditions

ψk+1(0)= V0 and ψk+1(1)= V1, (1.2b)

whereV0 andV1 are the applied biases at the Ohmic contactsx = 0 andx = 1, respectively. As mentioned
above, the solution to (1.2a) has a thin interior layer due to the jump inD(x) at thep–n junction.
Furthermore, there are boundary layers in the solutionψk+1 at the boundary points 0, 1. In typical
applications the applied (scaled) biasesV0 andV1 lie in the range[0,130] and hence the coefficient
−(ηeψ + ρe−ψ) of the termψk+1 in (1.2a) can be much greater than one in magnitude. We, therefore,
introduce the scaling factor

λ= 1

max06x61(ηeψk + ρe−ψk )
.

Multiplying both sides of (1.2a) byλ we have

λψ ′′k+1−A(x)(ψk+1−ψk)= F(x),
where

A(x)= λ(ηeψk + ρe−ψk
)

and F(x)= λ(ηeψk − ρe−ψk −D).
It is clear that 06 A(x) 6 1 and thatλ is positive because bothη and ρ are positive. Sinceλ can
also become small, it follows that (1.2) is a singularly perturbed problem with the singular perturbation
parameterλ.

In this paper we want to focus on overcoming the numerical difficulties caused by the presence
of boundary and interior layers in the exact solution of problem (1.2). Therefore, we investigate the
numerical solution of a single singularly perturbed second order ordinary differential equation with a
discontinuity in its inhomogeneous term. An appropriate singularly perturbed linear two-point boundary
value model problem is introduced in the next section.

2. Singularly perturbed problem

Motivated by the discussion in the previous section, we now consider the following singularly
perturbed two point boundary value problem:
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Finduε ∈C1(Ω)∩C2(Ω\{d}) such that

−εu′′ε + a(x)uε = f (x), x ∈Ω\{d}, (2.1a)

u(0)= u0, u(1)= u1, (2.1b)

f (d−) 6= f (d+), (2.1c)

where 0< ε 6 1 is a singular perturbation parameter andα 6 a(x) 6 α′ for some positive constantsα
andα′. We regard (2.1) as a model problem for (1.2), whered corresponds to the location of thep–n
junction.

The solutionuε of problem 2.1 can be decomposed into discontinuous regular and singular components

uε = vε +wε, (2.2)

where the regular componentvε is defined onΩ\{d} as the solution of the two problems

−εv′′ε + a(x)vε = f (x), x ∈ (0, d), (2.3a)

vε(0)= f (0)
a(0)

, vε(d−)= f (d−)
a(d)

, (2.3b)

and

−εv′′ε + a(x)vε = f (x), x ∈ (d,1), (2.3c)

vε(d+)= f (d+)
a(d)

, vε(1)= f (1)
a(1)

(2.3d)

and, consequently, the singular componentwε satisfies

εw′′ε + a(x)wε = 0, x ∈ (0, d)∪ (d,1), (2.4a)

wε(0)= uε(0)− vε(0), wε(1)= uε(1)− vε(1), (2.4b)[
wε(d)

]=−[vε(d)], [
w′ε(d)

]=−[v′ε(d)], (2.4c)

where[ω](d) = ω(d+)− ω(d−) denotes the jump atd in any functionω. Note that, althoughvε and
wε are undefined at the pointx = d, their sum is defined and continuous at this point. Also if, by chance,
uε(0)= vε(0) then no boundary layer occurs at the end-pointx = 0 and similarly at the end-pointx = 1.

We now state a useful lemma, which provides information about the boundary and interior layers
occurring in the solution of problem (2.1).

Lemma 1. Let uε = vε + wε be the solution of problem(2.1) and vε,wε its regular and singular
components defined in(2.3) and (2.4), respectively. Then, for each integerk satisfying06 k 6 4, we
have∣∣v(k)ε (x)∣∣6 {C(1+ ε1−k/2), x ∈ (0, d),

C
(
1+ ε1−k/2), x ∈ (d,1),∣∣w(k)ε (x)∣∣6{Cε−k/2e1(x), x ∈ (0, d),

Cε−k/2e2(x), x ∈ (d,1),
whereC is a constant independent of the singular perturbation parameterε and

e1(x)= e−x
√
α/ε + e−(d−x)

√
α/ε,

e2(x)= e−(x−d)
√
α/ε + e−(1−x)

√
α/ε.
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Proof. See [1,4] for details. Here we outline the main argument. The following minimum principle is
first established.

Suppose that a functionω ∈C0(Ω)∩C2(Ω\{d}) satisfies

ω(0)> 0, ω(1)> 0,

−εω′′(x)+ a(x)ω(x)> 0, for all x ∈Ω\{d},
[ω](d)= 0, [ω′](d)6 0,

then

ω(x)> 0, for all x ∈Ω.
From this, one easily establishes that‖uε‖Ω 6 C. The bounds onvε andwε and their derivatives are then
established using the arguments given in [4] for the problem

−εu′′ε + a(x)uε = f (x), x ∈Ω,
u(0)= u0, u(1)= u1,

a, f ∈C1(0,1)

applied to the intervals(0, d) and(d,1), separately. 2
These bounds on the derivatives of the components of the solution enable us to identify the location

and the width of the layers that are present in the solutionuε of problem (2.1). We see that the gradients
in the boundary layer functione1 depend inversely onε in O(

√
ε)-neighborhoods of the end-pointx = 0

and of the pointx = d. Outside these neighborhoods, the boundary layer functione1 and its derivatives
are negligible, since for allx > k√ε/α ln ε−1 we have

e−x
√
α/ε 6 εk.

Analogously, the boundary layer functione2 has steep gradients for small values ofε in O(
√
ε)-

neighborhoods of the pointx = d and of the end-pointx = 1.
Since we have identified where the layers occur in the solution of problem (2.1), it is both natural and

advisable to design a mesh with a significant proportion of its mesh points in these layer regions, in order
to resolve the corresponding boundary and interior layers. This leads in a natural way to the introduction
of fitted mesh methods, which is the topic of the next section.

3. Fitted mesh methods

We use the fitted mesh methods described in [3] for wide classes of problems. These are numerical
methods with piecewise-uniform fitted meshes having their mesh points distributed so that the resulting
numerical solutions resolve the boundary layers in the exact solution. An additional feature of these
methods is that, in the case of fitted finite difference methods, the linear interpolants of the finite
difference solutions yield global approximations that converge in the maximum norm to the exact solution
at each point of the domainΩ . A parameter-uniform fitted mesh method satisfies a parameter-uniform
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error estimate in the maximum norm, and so the convergence is independent of the singular perturbation
parameter. This is described formally in the following definition.

Definition. Suppose that for each value ofε the exact solutionuε is approximated by a sequence of
numerical solutions{(UN

ε ,Ω
N
)}∞N=1 whereUN

ε is defined on the meshΩ
N = {xi | x0= 0, xN = 1}Ni=0.

Let U
N

ε denote the piecewise linear interpolant overΩ of the discrete solutionUN
ε onΩ

N
. Then, the

numerical solutions are said to convergeε-uniformly, if there exist a positive integerN0, and positive
numbersC andp, whereN0, C andp are all independent ofN andε, such that for allN >N0

sup
0<ε61

∥∥Uε − uε
∥∥∞,Ω 6 CN−p,

where‖f ‖∞,Ω = maxx∈Ω |f (x)|. Herep is called theε-uniform order of convergence andC is the
ε-uniform error constant.

The reader is referred to [3] and the references therein for more details about fitted mesh methods.
In this paper, fitted mesh methods are constructed to solve problem (2.1). The resulting fitted finite
difference method is solved numerically using a non-overlapping Schwarz iterative process.

To construct the fitted meshΩ
N

ε we decompose the domainΩ into six subdomains

Ω =Ω1 ∪Ω2 ∪Ω3 ∪Ω4 ∪Ω5 ∪Ω6,

where

Ω1= [0, σ1), Ω2= [σ1, d − σ1), Ω3= [d − σ1, d),

Ω4= [d, d + σ2), Ω5= [d + σ2,1− σ2), Ω6= [1− σ2,1].
The transition pointsσ1, σ2 are chosen as in [5] to be

σ1=min
{
d

4
,2
√
ε

α
lnN

}
, σ2=min

{
1− d

4
,2
√
ε

α
lnN

}
.

This particular choice of the transition points is crucial for theε-uniform convergence of the numerical
method. Note that the transition points depend on both the singular perturbation parameterε and on
the numberN of mesh elements. In each of the six subdomains a uniform mesh is used. That is,N/8
nodes are uniformly distributed in each of the layer subdomainsΩi (i = 1,3,4,6), andN/4 nodes are
uniformly distributed in each of the subdomainsΩ2,Ω5. The resulting fitted meshΩ

N

ε onΩ is in general
a piecewise-uniform mesh. We note in passing that it becomes a uniform mesh in the case whenε or N
is sufficiently large to ensure thatσ1 = d/4, σ2 = (1− d)/4. Note that we have used six subdomains,
because there are in general two boundary layers, one atx = 0, the other atx = 1, and one interior
layer atx = d. If the boundary conditions happen to have values such that no boundary layer occurs
at a boundary point, then the corresponding fine mesh subdomain at that point can be eliminated and
the obvious modifications are made in the distribution of the mesh points. Of course no harm is done,
apart from some unnecessary computational work, if all of the fine mesh subdomains in such cases are
retained.

Problem (2.1) is now discretized and solved on the fitted meshΩ
N

ε using the following parameter-
robust non-overlapping Schwarz iterative method: given an initial guessu[0](d) for the unknownuε(d),
the algorithm is started by specifying
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U [0](x)= 0, x ∈ (0, d)∪ (d,1), (3.1a)

U [0](0)= u0, U [0](d)= u[0](d), U [0](1)= u1. (3.1b)

Then, fork = 1,2,3, . . . we solve the following two finite difference subproblems for the mesh functions
U
[k]
` ,U

[k]
r :

−εδ2U
[k]
` + a(xi)U [k]` = f (xi), 1< i <N/2, (3.2a)

U
[k]
` (0)=U [k−1](0), U

[k]
` (d)=U [k−1](d), (3.2b)

−εδ2U [k]r + a(xi)U [k]r = f (xi), 1< i <N/2, (3.2c)

U [k]r (0)=U [k−1](d), U [k]r (1)=U [k−1](1), (3.2d)

where the second order centered finite difference operator is defined by

δ2Zi ≡ D+Zi −D−Zi
(xi+1− xi−1)/2

and the first order forward and backward finite difference operators by

D+Zi ≡ Zi+1−Zi
xi+1− xi , D−Zi ≡ Zi −Zi−1

xi − xi−1
.

After these two sub-problems are solved, the approximation touε(d) is updated using the average of the
computed values at the two neighboring nodes ofd. That is,

U [k](d)= (U
[k−1]
` (x(N/2)−1)+U [k−1]

r (x(N/2)+1))

2
. (3.3)

We define thekth Schwarz approximation touε as

U [k] =


U
[k]
` , x < d,

U
[k−1]
` (x(N/2)−1)+U [k−1]

r (x(N/2)+1)

2
, x = d,

U
[k]
r , x > d,

(3.4)

whereU
[k]
` is the linear interpolant ofU [k]` onto [0, d].

This iterative process is repeated until successive iterates are sufficiently close at each point ofΩ
N

ε , in
the sense that they satisfy the stopping criterion

max
0<i<N

∣∣U [k](xi)−U [k−1](xi)
∣∣< 10−10. (3.5)

4. Numerical experiments

To verify the effectiveness of the numerical method constructed in the previous section, we apply it
to the following two test problems. Both test problems have one interior and one boundary layer. All
the computations were performed in Fortran 77 double precision on a Pentium PC under the Linux
environment.
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The first test problem is the reaction–diffusion problem

−εu′′ε + uε = f (x) in (0,1), (4.1a)

uε(0)= uε(1)= f (0), (4.1b)

where

f (x)=
{−0.5x, x 6 0.5,

0.5, x > 0.5.
(4.1c)

The solutionuε of this problem, which has an interior layer atx = 0.5 and a boundary layer atx = 1 is

uε(x)= 0.25(A+B)
[

exp
(
− 1√

ε
(0.5− x)

)
− exp

(
− 1√

ε
(0.5+ x)

)]
− 0.5x (4.2a)

for x 6 0.5 and

uε(x) = 0.25(A−B)exp
(
− 1

2
√
ε

)[
exp
(
− 1√

ε
(x − 1)

)
− exp

(
− 1√

ε
(1− x)

)]
+ 0.5

(
1− exp

(
− 1√

ε
(1− x)

))
(4.2b)

for x > 0.5, where the constantsA andB are

A=
√
ε− exp(−1/(2

√
ε))

1+ exp(−1/
√
ε)

and B = 1.5− exp(−1/(2
√
ε))

1− exp(−1/
√
ε)

.

Since the solution of this (and the next) problem has no boundary layer at the end-pointx = 0, the general
algorithm described in the previous section may be appropriately modified. Hence, we decomposeΩ into
the five subdomains

[0,0.5− σ )∪ [0.5− σ,0.5)∪ [0.5,0.5+ σ )∪ [0.5+ σ,1− σ )∪ [1− σ,1].
ThenN/4 mesh points are distributed uniformly in the subdomain[0.5+ σ,1− σ ),N/8 mesh points in
each of the subdomains[0.5− σ,0.5), [0.5,0.5+ σ )[1− σ,1] and the remaining 3N/8 mesh points in
the subdomain[0,0.5− σ ).

The transition parameters are taken to be

σ =min
{1

8,2
√
ε lnN

}
.

The problem is solved for various values ofε andN and the numerical results for four different values
of ε are plotted in Fig. 1. The initial guessu[0](0.5) for uε(0.5) is chosen in the following way: for each
possible value ofε, the starting value for the first iterate foruε(0.5) on the coarsest mesh is the average
value off (x) at the two neighboring mesh points on either side ofx = 0.5. For subsequent iterates the
computed valueU [k](0.5) on this mesh is then used as an initial guess for the next refined mesh. Since
the exact solution has the simple closed form (4.2) the errors in the numerical solution can be computed
exactly. The error in the maximum norm and the number of Schwarz iterations required for convergence
are listed in Table 1. The results confirm computationally that this method isε-uniform. In Table 2 the
errors in the maximum norm and the number of Schwarz iterations required for convergence using a
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Fig. 1. Graphs of the numerical solution of problem (4.1) for various values ofε using method (3.1)–(3.5) with
N = 80.

uniform mesh on the whole ofΩ (i.e., ε = 1
8) are given for comparison purposes, from which it is clear

that this method is notε-uniform.

Remark. The simpler initial guess strategy

u[0](0.5)= f (0.5−)+ f (0.5+)
2

(4.3)

for all values ofN andε results in larger iteration counts. The numerical results corresponding to this
simpler strategy are given in Table 3.

The second test problem is the reaction–diffusion problem with a nonsmooth variable coefficient

−εu′′ + a(x)u= f (x) in (0,1), (4.4a)

u(0)= u(1)= f (0), (4.4b)

where

a(x)=
{

2x + 1, x 6 0.5,
2(1− x)+ 1, x > 0.5

and f (x)=
{−0.5, x 6 0.5,

0.5, x > 0.5.
(4.4c)
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Table 1
Maximum pointwise errors and iteration counts for method (3.1)–(3.5) applied to problem (4.1) for various
values ofε andN

ε\N 8 16 32 64 128 256 512 1024

1 3.78E−3 1.66E−3 7.95E−4 3.90E−4 1.93E−4 9.63E−5 4.80E−5 2.40E−5

65 105 192 347 613 1064 1801 2948

2−2 9.42E−3 3.75E−3 1.72E−3 8.25E−4 4.05E−4 2.01E−04 9.99E−5 4.98E−5

55 95 173 311 553 969 1666 2791

2−4 9.49E−3 2.06E−3 6.45E−4 2.49E−4 1.08E−4 5.04E−5 2.43E−5 1.19E−5

35 65 112 193 332 565 946 1535

2−6 8.39E−3 4.86E−3 2.69E−3 1.37E−3 6.89E−4 3.45E−4 1.72E−4 8.62E−5

21 33 63 116 208 372 653 1129

2−8 1.89E−2 9.09E−3 4.29E−3 2.04E−3 9.95E−4 4.90E−4 2.43E−4 1.21E−4

12 20 35 63 114 204 361 632

2−10 2.32E−2 1.81E−2 7.23E−3 2.52E−3 1.04E−3 5.04E−4 2.43E−04 1.21E−4

8 12 20 34 61 108 193 339

2−12 1.22E−2 2.08E−2 1.59E−2 7.04E−3 1.87E−3 6.12E−4 2.52E−4 1.24E−4

7 9 12 19 33 58 103 182

2−14 6.11E−3 2.06E−2 1.59E−2 7.57E−3 2.68E−3 9.10E−4 3.05E−4 1.22E−4

6 9 12 17 26 41 66 107

2−16 4.09E−3 2.05E−2 1.59E−2 7.57E−3 2.68E−3 9.10E−4 2.90E−4 9.07E−5

5 9 12 17 25 39 63 101

2−18 5.94E−3 2.04E−2 1.59E−2 7.57E−3 2.68E−3 9.10E−4 2.90E−4 8.98E−5

5 8 11 16 24 37 59 94

2−20 6.88E−3 2.04E−2 1.59E−2 7.57E−3 2.68E−3 9.10E−4 2.90E−4 8.98E−5

4 8 11 15 23 35 56 88

2−22 7.34E−3 2.04E−2 1.59E−2 7.57E−3 2.68E−3 9.10E−4 2.90E−4 8.98E−5

4 8 10 14 22 33 52 82

2−24 7.58E−3 2.04E−2 1.59E−2 7.57E−3 2.68E−3 9.10E−4 2.90E−4 8.98E−5

3 7 10 14 20 31 48 75
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Table 2
Maximum pointwise errors and iteration counts for method (3.1)–(3.5) withσ = 1

8 applied to problem
(4.1) for various values ofε andN

ε\N 8 16 32 64 128 256 512 1024

1 2.43E−3 1.38E−3 7.30E−4 3.74E−4 1.90E−4 9.53E−5 4.78E−5 2.40E−5

51 94 183 338 605 1057 1795 2942

2−2 4.18E−3 2.67E−3 1.47E−3 7.65E−4 3.90E−4 1.97E−4 9.90E−5 4.96E−5

47 82 162 301 543 960 1658 2783

2−4 7.19E−3 1.30E−3 1.36E−4 6.83E−5 6.39E−5 3.94E−5 2.15E−5 1.12E−5

34 61 107 178 217 510 897 1489

2−6 3.82E−2 1.23E−2 4.39E−3 1.78E−3 7.88E−4 3.69E−4 1.78E−4 8.77E−5

20 37 66 119 213 376 659 1134

2−8 6.53E−2 2.20E−2 7.50E−3 2.83E−3 1.19E−3 5.38E−4 2.55E−4 1.24E−4

12 21 37 65 117 207 365 636

2−10 7.87E−2 3.02E−2 1.06E−2 3.70E−3 1.42E−3 5.98E−4 2.71E−4 1.29E−4

8 12 20 36 63 111 196 343

2−12 8.46E−2 3.63E−2 1.81E−2 7.57E−3 2.32E−3 7.43E−4 2.98E−4 1.36E−4

6 8 12 20 34 60 106 185

2−14 8.71E−2 3.93E−2 1.87E−2 1.81E−2 7.04E−3 1.87E−3 5.14E−4 1.66E−4

5 6 8 12 19 33 58 100

2−16 8.83E−2 4.06E−2 1.90E−2 1.87E−2 1.81E−2 7.04E−3 1.87E−3 4.76E−4

4 5 6 8 11 19 32 55

2−18 8.88E−2 4.12E−2 1.96E−2 9.32E−3 1.87E−2 1.81E−2 7.04E−3 1.87E−3

4 4 5 6 8 11 18 30

2−20 8.90E−2 4.14E−2 1.99E−2 9.65E−3 7.41E−3 1.87E−2 1.81E−2 7.04E−3

4 4 4 5 6 7 11 17

2−22 7.63E−6 3.05E−5 1.22E−4 4.87E−4 1.94E−3 7.41E−3 1.87E−2 1.81E−2

3 4 4 4 5 6 7 10

2−24 1.91E−6 7.63E−6 3.05E−5 1.22E−4 4.87E−4 1.94E−3 7.41E−3 1.87E−2

3 3 3 4 4 5 5 7
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Table 3
Maximum pointwise errors and iteration counts for method (3.1)–(3.5) with the initial guess strategy (4.3)
applied to problem (4.1) for various values ofε andN

ε\N 8 16 32 64 128 256 512 1024

1 3.78E−3 1.66E−3 7.95E−4 3.90E−4 1.93E−4 9.62E−5 4.80E−5 2.39E−5

65 133 262 509 983 1889 3619 6916

2−2 9.42E−3 3.75E−3 1.725E−3 8.25E−4 4.05E−4 2.02E−4 9.98E−5 4.98E−5

55 110 215 415 799 1533 2932 5596

2−4 9.49E−3 2.06E−3 6.45E−4 2.49E−4 1.08E−4 5.03E−5 2.42E−5 1.19E−5

35 66 124 236 449 854 1621 3070

2−6 8.39E−3 4.86E−3 2.69E−3 1.37E−3 6.89E−4 3.45E−4 1.72E−4 8.62E−5

21 39 73 139 264 505 964 1838

2−8 1.89E−2 9.09E−3 4.29E−3 2.04E−3 9.95E−4 4.90E−4 2.43E−4 1.21E−4

12 21 38 72 136 259 494 942

2−10 2.32E−02 1.81E−2 7.23E−3 2.52E−3 1.04E−3 5.04E−4 2.48E−4 1.23E−4

8 12 20 37 69 130 248 472

2−12 1.22E−2 2.08E−2 1.59E−2 7.04E−3 1.87E−3 6.12E−4 2.52E−4 1.24E−4

7 10 13 20 35 66 125 237

2−14 6.12E−3 2.06E−02 1.59E−2 7.57E−3 2.68E−03 9.10E−4 3.05E−4 1.22E−4

6 9 13 18 29 47 79 136

2−16 4.09E−3 2.05E−02 1.59E−2 7.57E−3 2.68E−3 9.10E−4 2.90E−4 9.07E−5

5 9 12 18 28 45 76 130

2−18 5.94E−3 2.04E−2 1.59E−2 7.57E−3 2.68E−3 9.10E−4 2.90E−4 8.98E−5

5 9 12 17 26 43 72 123

2−20 6.88E−3 2.04E−2 1.59E−2 7.57E−3 2.68E−03 9.10E−4 2.90E−4 8.98E−5

4 8 11 16 25 41 69 117

2−22 7.34E−3 2.04E−02 1.59E−2 7.57E−3 2.68E−03 9.10E−4 2.90E−4 8.98E−5

4 8 11 16 24 39 65 110

2−24 7.58E−3 2.04E−2 1.59E−2 7.57E−3 2.68E−03 9.10E−4 2.90E−4 8.98E−5

3 8 10 15 23 37 62 104



334 J.J.H. Miller et al. / Applied Numerical Mathematics 35 (2000) 323–337

Fig. 2. Graphs of the numerical solution of problem (4.4) for various values ofε using method (3.1)–(3.5) with
N = 80.

This test problem is solved using the same techniques as for the first. Graphs of the corresponding
numerical solutions are shown in Fig. 2. However, in this case a simple closed form of the exact solution is
not available and so we need to estimate the errors in the numerical solutions by taking as an approximate
exact solution the numerical solutions obtained on the fitted meshΩ6000

ε . When the pointx is not a mesh
point, we use the linear interpolant of the values at the two neighboring mesh points. The computed error
in the maximum norm and number of Schwarz iterates required for convergence are given in Table 4. The
results confirm computationally that this is anε-uniform method for the sake of comparison, analogous
results using a single uniform mesh on the whole ofΩ , obtained by takingσ = 1

8, are shown in Table 5.
It is clear that the latter is not anε-uniform method.

5. Conclusions

From the numerical experiments conducted in the previous section, we see that our new numerical
method, consisting of a standard finite difference operator on a non-standard piecewise-uniform fitted
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Table 4
Computed maximum pointwise errors and iteration counts for method (3.1)–(3.5) applied to
problem (4.4) for various values ofε andN

ε\N 12 24 48 96 192 384 768

1 1.82E−2 9.05E−3 3.98E−3 1.87E−3 9.18E−4 4.44E−4 2.05E−4

85 138 287 544 966 1704 2969

4−1 3.73E−2 1.77E−2 7.59E−3 3.52E−3 1.72E−3 8.30E−4 3.83E−4

64 112 231 437 780 1387 2445

4−2 3.14E−2 1.34E−2 5.44E−3 2.46E−3 1.19E−3 5.70E−4 2.63E−4

40 67 134 251 447 795 1402

4−3 1.30E−2 3.42E−3 1.03E−3 4.40E−4 2.06E−4 9.74E−5 4.46E−5

21 33 64 117 205 358 620

4−4 2.68E−2 7.99E−3 1.69E−3 3.81E−4 9.54E−5 2.37E−5 5.80E−6

11 16 27 45 74 120 189

4−5 3.75E−2 2.71E−2 6.53E−3 1.60E−3 4.01E−4 9.92E−5 2.41E−5

6 7 8 9 6 1 1

4−6 3.82E−2 2.79E−2 1.01E−2 3.33E−3 1.11E−3 3.57E−4 1.01E−4

5 7 6 1 1 1 1

4−7 3.86E−2 2.83E−2 1.03E−2 3.39E−3 1.13E−3 3.57E−4 1.06E−4

5 7 6 1 1 1 1

4−8 3.88E−2 2.86E−2 1.04E−2 3.42E−3 1.14E−3 3.61E−4 1.07E−4

5 7 6 1 1 1 1

4−9 3.89E−2 2.87E−2 1.05E−2 3.44E−3 1.14E−3 3.63E−4 1.08E−4

5 6 5 1 1 1 1

4−10 3.89E−2 2.88E−2 1.05E−2 3.44E−3 1.15E−3 3.64E−4 1.08E−4

5 6 5 1 1 1 1

4−11 3.90E−2 2.88E−2 1.05E−2 3.45E−3 1.15E−3 3.64E−4 1.08E−4

4 5 4 1 1 1 1

4−12 3.90E−2 2.88E−2 1.05E−2 3.45E−3 1.15E−3 3.64E−4 1.08E−4

4 5 3 1 1 1 1
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Table 5
Computed maximum pointwise errors and iteration counts for method (3.1)–(3.5) withσ =
1/8 applied to problem (4.4) for various values ofε andN

ε\N 12 24 48 96 192 384 768

1 1.57E−2 7.65E−3 3.77E−3 1.86E−3 9.11E−4 4.40E−4 2.05E−4

94 156 294 539 971 1715 2971

4−1 3.10E−2 1.47E−2 7.11E−3 3.48E−3 1.70E−3 8.21E−4 3.82E−4

70 127 236 433 783 1396 2447

4−2 2.17E−2 1.00E−2 4.85E−3 2.38E−3 1.16E−3 5.60E−4 2.60E−4

44 74 136 248 448 798 1402

4−3 6.08E−3 1.51E−3 4.42E−4 2.76E−4 1.65E−4 8.66E−5 4.20E−5

23 36 62 95 193 349 610

4−4 2.04E−2 5.72E−3 1.55E−3 3.81E−4 9.31E−5 2.31E−5 5.70E−6

13 21 36 63 108 179 286

4−5 3.80E−2 2.14E−2 5.85E−3 1.57E−3 3.93E−4 9.76E−5 2.39E−5

8 12 20 35 60 102 167

4−6 2.47E−2 3.96E−2 2.21E−2 6.05E−3 1.62E−3 4.03E−4 9.90E−5

6 8 12 20 33 57 96

4−7 2.23E−2 2.63E−2 4.06E−2 2.24E−2 6.16E−3 1.65E−3 4.12E−4

5 6 8 12 19 32 54

4−8 2.25E−2 1.08E−2 2.71E−2 4.11E−2 2.26E−2 6.21E−3 1.67E−3

4 5 6 8 11 18 30

4−9 2.25E−2 1.08E−2 8.28E−3 2.76E−2 4.14E−2 2.27E−2 6.24E−3

4 4 5 6 7 11 17

4−10 2.25E−2 1.08E−2 5.31E−3 8.44E−3 2.78E−2 4.15E−2 2.28E−2

3 4 4 5 6 7 10

4−11 2.25E−2 1.09E−2 5.31E−3 2.63E−3 8.53E−3 2.79E−2 4.16E−2

3 3 4 4 5 5 7

4−12 2.25E−2 1.09E−2 5.32E−3 2.63E−3 2.17E−3 8.57E−3 2.80E−2

3 3 3 4 4 4 5
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mesh, generates numerical solutions that converge parameter-uniformly in the maximum norm. This
behaviour is in marked contrast to the numerical solutions generated by an analogous numerical method
on a uniform mesh. We see also from the graphs, that the numerical solutions display no non-physical
numerical oscillations, which are often an undesirable phenomenon that arises when classical numerical
methods are used to solve problems with layers. We conclude therefore that the use of appropriately
fitted piecewise-uniform meshes provides a remarkably simple solution to the problem of constructing
satisfactory numerical solutions to problems involving boundary and interior layers.
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