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V.V. Arestov and A.G. Babenko, On Kissing Number in Four Dimensions

Let τm denote the greatest number of nonoverlapping equal balls that touch another ball of the same
radius inRm. Due to A.M. Odlyzko and N.J.A. Sloane [11] the problem of determination of the number
τ4 (kissing number problem inR4) was reduced to investigation of minimal distances of arrangements
of 25 points on unit sphereS3 in R4. In this presentation we demonstrate possibilities of the classical
Delsarte method for estimating the upper bounds of minimal distances of arrangements of25 and24
points onS3.

Introduction. Let Sm−1 denote the unit sphere in real Euclideanm-
dimensional spaceRm : Sm−1 = {x ∈ Rm : xx = 1}, wherexy = x1y1 +
x2y2 + . . . + xmym is the inner product of vectors (points)x = (x1, x2, . . . , xm),
y = (y1, y2, . . . , ym) ∈ Rm. For−1 ≤ s < 1 a setW ⊂ Sm−1 containing at least
two points is calleda sphericals-code,if for any two pointsx, y ∈ W, x 6= y,
their inner productxy satisfies to the conditionxy ≤ s. This condition means that
an angular distance (angle) between any pair of distinct points inW is greater than
or equal toarccos s:

ϕ̃(W ) := min {arccos(xy) : x 6= y, x, y ∈ W} ≥ arccos s.

Thesizeof W is simply the number of points in the setW ; we denote it by|W |.
The basic problem for spherical codes can be formulated as follows: for given

m ≥ 2 and−1 ≤ s < 1, find a sphericals-codeW ⊂ Sm−1 of largest possible
size|W |. We denote this maximal size byM(m, s). This problem can be consider
in the inverse form: for givenm ≥ 2 andN ≥ 2, find a spherical codeW ⊂
Sm−1, |W | = N with largest possible minimal anglẽϕ(W ), which we denote by
ϕm(N), i.e.

ϕm(N) = max { ϕ̃(W ) : W ⊂ Sm−1, |W | = N }.

The indicated problem and the kissing number problem are connected by equality
(cf. [3])

τm = M(m, 1/2), m ≥ 2. (1)

The known example (cf. [3, Ch. 1,§ 2]) of spherical1/2-code inR4 is the set
consisting from24 vertexes of the regular convex polyhedron with Schläfli symbol
{3, 4, 3}; therefore24 ≤ τ4. Odlyzko and Sloane [11] have proved thatτ4 does
not exceed25; thus,

24 ≤ τ4 ≤ 25. (2)
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In the articles [9], [10], Levenstein obtained universal upper bound for the
quantityM(m, s). Levenstein’s result can be reformulated for estimatingϕm(N)
(cf. [2]); in particular,

ϕ4(25) < 60.79◦, ϕ4(24) < 61.65◦.

For concrete cases stronger estimations were presented by Boyvalenkov, Danev
and Bumova [2]; for example, (in our notations) they obtained the inequality

ϕ4(24) < 61.47◦.

The arrangement of25 points onS3 with the minimal angle57.4988826◦ was
constructed by Hardin, Sloane and Smith [7]. Thus, the following estimations are
fulfilled:

57.4988826◦ ≤ ϕ4(25) < 60.79◦, 60◦ ≤ ϕ4(24) < 61.47◦.

Delsarte method. The method which arose in investigations of Delsarte [4]
on upper bounds for packings in some metric spaces is often used for estimat-
ing from above the quantitiesM(m, s), ϕm(N). This method was developed and
successful applied in the works [5], [8], [11], [9], [10], [2] and in of many other
articles; the rich bibliography on the subject is contained in monograph [3].

LetRk = Rα,α
k , k = 0, 1, 2, . . . , be the system of ultraspherical (Gegenbauer)

polynomials which are orthogonal on interval[−1, 1] with respect to weight func-
tion v(t) = (1 − t2)α, α = (m − 3)/2, and normed by conditionRk(1) = 1.
The mentioned approach is founded on a positive-definite property of these poly-
nomials (if we will consider them as kernelsRk(xy) on on the Cartesian product
Sm−1 × Sm−1).

For−1 ≤ s < 1, m ≥ 2, denote byFm(s) a set consisting of all continuous
functionsf on [−1, 1] which are non-positive on[−1, s] : f(t) ≤ 0, t ∈ [−1, s],
and represented on[−1, 1] by seriesf(t) = f0R0(t) + f1R1(t) + f2R2(t) + . . .
with non-negative coefficientsfk ≥ 0, k ≥ 1, andf0 > 0. The fact thatFm(s) is
non-empty for all−1 ≤ s < 1, m ≥ 2 was proved in [8]. Let us put

wm(s) = inf
{

f(1)
f0

: f ∈ Fm(s)
}

, −1 ≤ s < 1, m ≥ 2.

The following statement is contained in [5], [8].

Theorem A. Lets ∈ [−1, 1), m ≥ 2. Then M(m, s) ≤ wm(s).
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Formulation of results. Further we consider four-dimensional case (m = 4)
only. In this case indexα is equal to1/2 and the polynomialsRk = R1/2,1/2

k are
Chebyshev polynomials of the second kind:

Rk(t) =
sin(k + 1)θ
(k + 1) sin θ

, t = cos θ, k = 0, 1, 2, . . .

Using technique worked out by authors in [1] we find exact values of a parameter
s for which functionw4(s) takes values25 and24. For formulating the result, we
need the following polynomial:

H(z) = 1744568320000 z28 + 19824640000 z27 − 11368270848000 z26 +
+ 299992125440 z25 + 33683617005056 z24 − 1690611799808 z23 −
− 59756580346080 z22 + 3740858012128 z21 + 70524254066704 z20 −
− 4516619739088 z19 − 58188563861056 z18 + 3200479271680 z17 +
+ 34328475907496 z16 − 1262955136312 z15 − 14563330120710 z14 +
+ 172742066070 z13 + 4417415566665 z12 + 76811504675 z11 −
− 942777154875 z10 − 46753060057 z9 + 137285137301 z8 +
+ 11621133345 z7 − 12856584451 z6 − 1594636173 z5 + 680106134 z4 +
+ 118057108 z3 − 13255560 z2 − 3691008 z − 186624.

Theorem 1. In [−1, 1) the equationw4(s) = 25 has the unique solution:s =
z13, wherez13 = 0.4925150241 . . . is thirteenth(on the increase) real root of
polynomialH.

Consider the polynomial

h(z) = 6068404224 z24 − 5559746560 z23 − 32435331072 z22 + 30162632704 z21 +
+ 76657888256 z20 − 69950994432 z19 − 105547058176 z18 + 90905438208 z17 +
+ 93805633312 z16 − 72899067584 z15 − 56276296952 z14 + 37463407248 z13 +
+ 23144486195 z12 − 12425086062 z11 − 6505367271 z10 + 2613609108 z9 +
+ 1227229561 z8 − 331172622 z7 − 149222121 z6 + 22205608 z5 +
+ 10721860 z4 − 490544 z3 − 368104 z2 − 10880 z + 2432.

Theorem 2. In [−1, 1) the equationw4(s) = 24 has the unique solution:s = x12,
wherex12 = 0.4785451836 . . . is twelfth(on the increase) real root of polynomial
h.
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Corollary. Among arbitrary25 (resp.24) points located onS3 ⊂ R4 there exist
two points with the angle between them strictly less than60.5◦ (resp. 61.41◦).
Thus,

ϕ4(25) < 60.5◦, ϕ4(24) < 61.41◦.

Let us remind also (see (1), (2)) that the answer to the question: ”whether is
the least angular distance between pairs of points of arbitrary configuration of25
points onS3 strictly less than60 degrees?” should give a solution of the kissing
number problem inR4.

The theorem 1 implies that in order to find the numberτ4 it is necessary to
use other methods. We hope that application of results and ideas of Paul Erdös,
his coauthors and pupils, in particular, concerning properties of distribution of
distances of given number points on sphere [6], will help to decide problems of
such kind.
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