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Abstract. It is known that the minimum affine separating committee (MASC) combinatorial op-
timization problem, which is related to some machine learning techniques, is NP-hard and does
not belong to Apx class unless P = NP . In this paper, it is shown that the MASC problem for-
mulated in a fixed dimension space within n > 1 is intractable even if sets defining an instance
of the problem are in general position. A new polynomial-time approximation algorithm for this
modification of the MASC problem is presented. An approximation ratio and complexity bounds
of the algorithm are obtained.
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1. Introduction

The minimum affine separating committee (MASC) problem (Khachai, 2006a, 2006b)
considered in this paper arose in machine learning at the training stage in the class of
committee piece-wise linear decision rules. Actually, the MASC problem is closely con-
nected with two well-known NP-hard problems: the training problem for a simplest clas-
sical perceptron (Lin, 1991) and the problem of polyhedral separability (Megiddo, 1988).
According to the traditional approach to the analysis of subclasses of intractable prob-
lems, it seems important to study computational complexity and approximability of the
MASC problem, as a particular case of the mentioned-above problems.

It is known (Khachai, 2006a) that the MASC problem is NP-hard and is hardly ap-
proximable (Khachai, 2008) in the general case. Also, it is known (Khachai, 2008) that
the problem remains intractable being formulated in a space of an arbitrary fixed di-
mension n > 1. Nevertheless, the proofs of all these intractability results are signifi-
cantly based on considering degenerate (specifically constructed) instances of the prob-
lem. A natural question arises whether the MASC problem remains intractable if these
instances are explicitly excluded from consideration. For this exclusion, it is sufficient to
assume that a finite set (from an n-dimensional space) defining the instance of the MASC
problem is in general position, i.e., each subset of this set containing n + 1 elements is
affinely independent (in this case, these elements are vertices of an n-dimensional non-
degenerate simplex).
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Up to now, the question on intractability of the MASC problem under this additional
constraint was still open. In addition, the question on shortening the gap between the
known (Khachai, 2008) approximation threshold O(log log log m) of the problem and
the best approximation ratio of O(m) of known polynomial-time approximation algo-
rithms (Khachay, 2006b), where m is the cardinality of a finite set defining the instance
of the MASC problem, was still open as well. Answers to these questions are given in the
present paper. Actually, the paper contains the following results.

1. It is proved that the MASC problem formulated in a space of an arbitrary fixed di-
mension n > 1 remains NP-hard under an additional constraint on general position
(Section 3, this result was previously announced at Khachay and Pobery (2008).

2. A new polynomial-time approximation algorithm having the approximation ratio
of O(log m) under some natural assumption is proposed (Section 4).

2. Definitions, Problems, and Known Results

Let R, Q, Z, and N denote the sets of real, rational, integer, and natural numbers, respec-
tively. Let Rn, Qn, and Zn denote the corresponding n-dimensional vector spaces, and
Nm = {1, . . . , m}. A function f : Rn → R having the form f(x) = cT x − d, where
c ∈ Qn, d ∈ Q, is called an affine function (with rational coefficients).

DEFINITION 1. Let f1, . . . , fq be affine functions, and A, B be finite subsets of Rn.

A finite sequence

Q = (f1, . . . , fq)

is called an affine committee separating the sets A and B if

| {i ∈ Nq: fi(a) > 0} | >
q

2
(a ∈ A),

| {i ∈ Nq: fi(b) < 0} | >
q

2
(b ∈ B).

Here the number q is called the number of elements of the committee Q, and the sets A

and B are called separable by this committee.

According to the Mazurov criterion (Mazurov, 1971), sets A and B can be separated
by an affine committee if and only if A ∩ B = ∅. However, for many reasons (model
simplification, VCD minimization, etc.), of particular interest are separating committees
with the minimum number of elements, which are called minimum committees.

PROBLEM 1 (Minimum affine separating committee (MASC)). Let finite sets A, B ⊂
Qn be given. It is required to find an affine committee Q with the minimum number of
elements q that separates the sets A and B.
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The MASC problem is related to some combinatorial optimization problems origi-
nated from machine learning and computational geometry. Let us discuss them briefly.
A simplest perceptron is a 2-layered feed-forward neural network without hidden layers
with q input neurons and a single output (with number q + 1). An activation function of
the ith neuron has the classical form

ϕi(x) =

{
1, if cT

i x − di > 0,

−1, otherwise,
(1)

where x ∈ Rn, ci ∈ Qn, and di is a rational number. Thus, the perceptron realizes the
decision rule

F (x| (c1, d1), . . . , (cq+1, dq+1)): Rn → { −1, 1},

parameterized by the pairs (ci, di). This rule assigns a pattern x to the first or the second
class if F (x) = 1 or F (x) = −1, correspondingly.

Given a training sample

(a1, . . . , am1 , b1, . . . , bm2), (ai, bj ∈ Qn), (2)

consisting of precedents ai of the first class and bj of the second class, one can design a
learning procedure for the perceptron, i.e., a procedure of fitting parameters ci and di in
order to

F (ai) > 0 (i ∈ Nm1), F (bj) < 0 (j ∈ Nm2). (3)

Any “trained” perceptron, which parameters are specified as an arbitrary feasible solution
of system (3), is called correct on sample (2). The following combinatorial problems are
closely connected to this learning procedure.

PROBLEM 2 (Training (loading) a perceptron). Let a natural number q and training sam-
ple (2) be given. Does there exist a correct perceptron on sample (2) with at most q input
neurons?

PROBLEM 3 (Optimal correct perceptron (OCP)). Let training sample (2) be given. It is
required to construct a correct on sample (2) perceptron with the minimum number of
input neurons.

It is known (Blum, 1992) that the former problem is NP-complete and remains such
for any fixed q � 2, while the latter is NP-hard (Lin, 1991). As can be seen, the MASC
problem is a special case of the OCP problem, in which the output neuron has parameters
cq+1 = [1, . . . , 1]T , dq+1 = 0 according to the simple majority voting rule.

Other problems that related to the MASC problem originate from computational ge-
ometry and concern with constructing optimal piece-wise linear separating surfaces for
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sets having intersecting convex hulls. Following (Megiddo, 1988), consider the formula-
tions of these problems. To each hyperplane H = {x ∈ Rn : cT x = d, c �= 0}, assign a
predicate Π[H]: Rn → {true, false} by the rule similar to (1):

Π[H](x) =

{
true, if cT x > d,

false, otherwise.

Let finite sets A, B ⊂ Rn and Boolean formula ϕ(ξ1, . . . , ξk) be given. Hyperplanes
H1, . . . , Hk are said to separate the sets A and B by the rule (formula) ϕ if

ϕ(Π[H1](a), . . . , Π[Hk](a)) = true (a ∈ A),

ϕ(Π[H1](b), . . . , Π[Hk](b)) = false (b ∈ B).

Consider the following combinatorial problems.

PROBLEM 4 (k-Polyhedral separability with a given Boolean formula). Let finite sets
A, B ⊂ Qn, A = {a1, . . . , am1 }, B = {b1, . . . , bm2 } and a Boolean function
ϕ(ξ1, . . . , ξk) be given. Do there exist hyperplanes H1, . . . , Hk separating the sets A

and B by the rule ϕ?

When the separation rule ϕ is not known a priory, one can formulate the following,
more general, problem.

PROBLEM 5 (k-Polyhedral separability). Let finite sets A, B ⊂ Qn A = {a1, . . . , am1 },
B = {b1, . . . , bm2 } and a natural number k be given. Do there exist hyperplanes
H1, . . . , Hk separating the sets A and B by the following rule: for each pair (a, b),
where a ∈ A and b ∈ B, there is an appropriate hyperplane Hj , j = j(a, b), such
that Π[Hj ](a) = true and Π[Hj ](b) = false?

As is known, the latter problem has a positive answer if and only if there is an appro-
priate formula ϕ for which the former problem has also a positive answer. The following
theorem summarizes the complexity results obtained in Megiddo (1988).

Theorem 1.
1. Both above-formulated problems are NP-complete and remain intractable for any

fixed k � 2.

2. Problem 5 remains NP-complete for any fixed n > 1.

3. Problem 5 for arbitrary fixed k and n is polynomially solvable.

The MASC problem is a particular case of the optimization version of the problem
of k-polyhedral separability with a given Boolean formula (which takes the value true if
and only if the major part of its arguments take the value true).

The following theorem characterizes computational complexity of the MASC prob-
lem in the general case.
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Theorem 2 (Khachai, 2006a). The MASC problem is NP-hard and remains such under
the additional constraint A ∪ B ⊂ {x ∈ {0, 1, 2}n: ‖x‖2 � 2} .

In correspondence to the standard approach to the analysis of NP-hard problems, one
can be interested in constructing polynomial-time approximation algorithms and finding
lower bounds of efficient approximation ratios for these problems. In Khachay (2006b),
an approximation algorithm having the ratio of O(m) is proposed. This ratio is the best
known result to date for the MASC problem in the general case. Also, this paper contains
the description of a non-trivial polynomially solvable subclass of the MASC problem
for which this algorithm is exact. On the other hand, there are some negative results
concerning approximability of the MASC problem.

Theorem 3 (Khachai, 2008). The MASC problem does not belong to Apx complexity
class unless P = NP. Moreover, if NP �⊂ DTIME(2poly(log n)) then there exists a
constant D > 0 such that the MASC problem has no approximation algorithms with an
approximation ratio better then D log log log m.

In Khachai (2008), a particular case of the MASC problem formulated in a fixed
dimension space is considered. This case is important for applications, especially in ma-
chine learning.

PROBLEM 6 (Minimum affine separating committee in a space of fixed dimension n

(MASC(n))). Let finite sets A = {a1, . . . , am1 } and B = {b1, . . . , bm2 }, A, B ⊂ Qn,

be given, where n is fixed. It is required to find an affine committee Q with the minimum
number of elements that separates the sets A and B.

It is known (Mazurov, 1971) that the MASC(n) problem is polynomially solvable for
n = 1. For an arbitrary n > 1 this problem is NP-hard. The proof of this result is obtained
as a consequence of intractability of the following problem.

PROBLEM 7 (Planar affine separating committee (PASC)). Let finite sets A = {a1, . . . ,

am1 } and B = {b1, . . . , bm2 }, A, B ⊂ Q2, and a natural number t be given. Does there
exists an affine committee Q with at most t elements that separates the sets A and B?

It can be easily verified that the PASC problem is just a decision version of the
MASC(2) problem and belongs to NP. The proof of intractability of the problem PASC
follows from polynomial reduction of the well-known NP-complete problem of covering
a finite set (of points) on the plane by a set of straight lines, also known as the point
covering (PC) problem.

DEFINITION 2. A set of lines L = {l1, . . . , lk }, where lj = {x ∈ R2: cT
j x = dj } and

cj �= 0, is called a cover of a set P if for every p ∈ P there is a line l = l(p) ∈ L such
that p ∈ l.
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PROBLEM 8 (Point covering (PC)). Let a finite set P on the plane and a natural number
s be given. Does there exist a cover L of the set P such that |L| � s?

If a set P is in general position, i.e., there is no any straight line containing arbitrary
three points of P, the PC problem has a trivial solution (“Yes” if and only if s � 
|P |/2�)
that can be found in polynomial time. Nevertheless, in the general case the PC problem
is intractable.

Theorem 4 (Megiddo, 1982). The PC problem is NP-complete in the strong sense.

Hereinafter, the following notation is used:

B(x0, ε) = {x ∈ R2: ‖x − x0‖2 � ε}

is the circle centered at point x0 with radius ε, aff(P ) is the affine hull of the set P, and
dim is the dimension of an affine (or linear) manifold. Also, the following proposition is
necessary.

PROPOSITION 1 (Megiddo, 1982). Let a set P = {p1, . . . , pk } ⊂ Z2, numbers ρ =
max{ ‖p‖2: p ∈ P } and ε ∈ (0, 1

6(2ρ+1) ), and nonempty subset J ⊂ Nk be given.
A straight line l = l(J) such that

B(pj , ε) ∩ l �= ∅ (j ∈ J) (4)

exists if and only if the condition

dimaff({pj : j ∈ J }) � 1

holds.

Further, let an instance of the PC problem be defined by a set P = {p1, . . . , pk } ⊂ Z2

and a natural number s. Let us determine numbers ρ and ε by the formulas

ρ = max{ ‖p‖2: p ∈ P }, ε =
1

6(2ρ + 1) + 1
. (5)

Fix a vector σ, ‖σ‖2 = 1 such that, for any {i, j} ⊂ Nk, the line segments [pi −
εσ, pi + εσ] and [pj − εσ, pj + εσ] do not lie on the same line. Assign to the original
instance of the PC problem an appropriate instance of the PASC problem by the equations

A = P, B = (P − εσ) ∪ (P + εσ) and t = 2s + 1.

One can easily verify that the above-described procedure can be carried out in time
bounded from above by a polynomial in the length of a setting of the instance of PC.
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Theorem 5 (Khachai, 2008). The set P has a cover consisting of s lines if and only if
the sets

A = P and B = (P − εσ) ∪ (P + εσ) (6)

are separable by an affine committee of 2s + 1 elements.

COROLLARY 1. The PASC problem is NP-complete in the strong sense. The ASC(n)1

problem within an arbitrary n > 1 is NP-complete in the strong sense as well.

COROLLARY 2. The MASC(n) problem within an arbitrary n > 1 is NP-hard.

COROLLARY 3. The problem of k-polyhedral separability with a given formula formu-
lated in Zn within a fixed n > 1 is NP-complete in the strong sense.

3. The MASC Problem: Case of General Position

Theorem 5 has been proved under the implicit assumption on possible degeneracy of the
set A ∪ B (i.e., when this set in not in general position). In this section, a similar result
obtained without this assumption is proved.

DEFINITION 3. A set Z ⊂ Rn, |Z| > n, is said to be in general position if the equality
dimaff(Z ′) = n holds for each subset Z ′ ⊆ Z, |Z ′ | = n + 1.

Particularly, a set Z ⊂ R2 is in general position (by the definition) if there is no any
subset Z ′ = {z1, z2, z3} ⊆ Z such that points z1, z2, and z3 belong to the same straight
line. It is evident that the instances of the PASC problem such that the set A ∪ B is not
in general position are very rare (one can even say that they constitute a set of measure
zero). So, it could be interesting to investigate computational complexity of the PASC
problem, wherein the set A ∪ B taken according to Definition 3.

PROBLEM 9 (Planar affine separating committee for sets in general position (PASC-GP)).
Let finite sets A = {a1, . . . , am1 } and B = {b1, . . . , bm2 }, A, B ⊂ Q2, such that the set
A ∪ B is in general position, and a natural number t be given. Does there exists an affine
committee Q with at most t elements that separates the sets A and B?

Along with the PASC-GP problem, consider a modification of the MASC(n) problem
taking into account the additional constraint on general position.

PROBLEM 10 (Minimum affine separating committee in a space of fixed dimension n

for sets in general position (MASC-GP(n))). Let finite sets A = {a1, . . . , am1 } and

1ASC(n) is a decision version of the MASC(n) problem.
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B = {b1, . . . , bm2 }, A, B ⊂ Qn, such that the set A ∪ B is in general position be given.
It is required to find an affine committee Q with the minimum number of elements that
separates the sets A and B.

Similarly to the considerations from the previous section, assume that an instance of
the PC problem is defined by a finite set P of k integer points and some natural number s.
Let numbers ρ and ε be determined by formulas (5). Let us fix 2-dimensional vectors σ

and τ such that ‖σ‖2 = ‖τ ‖2 = 1, σT τ = 0, and for any {i, j} ⊂ Nk the pairs of
line segments [pi − εσ, pi + εσ] and [pj − εσ, pj + εσ] and also [pi − ετ, pi + ετ ] and
[pj − ετ, pj + ετ ] do not lie on the same line. To the original instance of the PC problem
assign the instance of the PASC-GP problem (Fig. 1), which is defined by the equalities

A = {p ± ε(p)
M

τ : p ∈ P }, B = {p ± ε(p)σ: p ∈ P }, and t = 2s + 1.

Here the numbers ε(p) and M > 0 are chosen in such a way that the following
inequality

max
p∈P

ε(p)
M

< min
p∈P

ε(p)

is valid and the set A ∪ B is in general position. As well as in the case of the PASC
problem, it is easily verified that the above-described reduction can be done in polynomial
time.

Theorem 6. The set P = {p1, . . . , pk } ⊂ Z2 has a cover of s straight lines if and only
if the sets A = {p ± ε(p)

M τ : p ∈ P } and B = {p ± ε(p)σ: p ∈ P } are separable by an
affine committee of 2s + 1 elements.

Fig. 1. Reduction of PC to PASC-GP.
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Proof. 1. Consider an arbitrary cover L of the set P by straight lines. To each line lj ∈ L,

lj = {x ∈ R2: cT
j x = dj }, assign the subset P (j) = P ∩ lj and subsets

A(j) =
{

p ± ε(p)
M

τ : p ∈ P (j)
}

and B(j) =
{
p ± ε(p)σ: p ∈ P (j)

}
.

For any point p ∈ P (j), the appropriate elements p − ε(p)σ and p + ε(p)σ of the set
B(j), obviously, satisfy the inequality

(
cT
j (p − εσ) − dj)(cT

j (p + εσ) − dj

)
< 0, (7)

i.e., these points are located on the different sides of the line lj . Take an arbitrary number
δj , satisfying the condition

max
p∈P

ε(p)
M

< δj < min
p∈P

ε(p),

in such a way that for the functions f2j−1, f2j , defined by the formulas

f2j−1(x) = cT
j x − dj + δj , f2j(x) = −cT

j x + dj + δj , (8)

the inequalities

f2j−1(p − ε(p)σ) · f2j(p − ε(p)σ) < 0,

f2j−1(p + ε(p)σ) · f2j(p + ε(p)σ) < 0,

f2j−1(p − ε(p)
M τ) · f2j(p − ε(p)

M τ) > 0,

f2j−1(p + ε(p)
M τ) · f2j(p + ε(p)

M τ) > 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(p ∈ P (j))

are valid. By virtue of (7), such a construction is possible.
By the choice of ε, the inequalities

f2j−1(a) > 0, f2j(a) > 0, (a ∈ A(j)),

f2j−1(x) · f2j(x) < 0, (x ∈ A ∪ B \ (A(j) ∪ B(j))

are valid as well.
The constructed finite sequence of functions (f1, ..., f2s) possesses the property

| {i: fi(a) > 0}| � s + 1, (a ∈ A),

| {i: fi(b) < 0}| = s, (b ∈ B).

Let us supplement this sequence with an arbitrary affine function f0 satisfying the
condition

f0(x) < 0, (x ∈ A ∪ B) (9)
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that is feasible by virtue of finiteness of the set A ∪ B. The sequence

Q = (f0, f1, . . . , f2s)

is the required affine committee of 2s+1 elements that separates the sets A and B (Fig. 2).

2. Let the sequence Q = (f1, ..., fq) be an arbitrary affine committee separating the
sets A and B. By the definition of an affine separating committee, for each point p ∈ P

and for each pair {1, 2}, {2, 3}, {3, 4} and {1, 4} (Fig. 3), there is an appropriate el-
ement of Q that classifies this pair correctly. Let p be an arbitrary element of P and
f(x) = cT x − d be a committee member classifying the points p − ε(p)σ and p + ε(p)

M τ

correctly, i.e., in such a way that the inequalities

f

(
p +

ε(p)
M

τ

)
= cT p +

ε(p)
M

cT τ − d > 0,

f(p − ε(p)σ) = cT p − ε(p)cT σ − d < 0

Fig. 2. The construction of a separating committee in the case of general position.

Fig. 3. The numeration of the points.
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are valid. Whence,

cT

(
σ +

1
M

τ

)
> 0. (10)

Let us prove that for any p′ ∈ P the points p′ +ε(p′)σ and p′ − ε(p′)
M τ cannot be correctly

classified by the same function f. Indeed, if, on the contrary, the inequalities

f

(
p′ − ε(p′)

M
τ

)
= cT p′ − ε(p′)

M
cT τ − d > 0,

f(p′ + ε(p′)σ) = cT p′ + ε(p′)cT σ − d < 0

are valid, then

cT

(
σ +

1
M

τ

)
< 0.

This contradicts (10).
For each point p ∈ P, let us denote by I1(p) the set of indices of the elements of Q

classifying correctly the pair {1, 2}, and by I2(p) the same for the pair {3, 4}. Further,
define the sets I1 and I2 by the equalities

I1 =
⋃
p∈P

I1(p), I2 =
⋃
p∈P

I2(p).

From the above proof, the constructed sets I1 and I2 are nonempty and I1 ∩ I2 = ∅.

Consider the set P ′(i) = {p ∈ P : i ∈ I1(p)} for an arbitrary i ∈ I1. Obviously,⋃
i∈I1

P ′(i) = P. Further, the straight line fi(x) = 0 intersects the neighborhood B(p, ε)
for any point p ∈ P ′(i). Hence, dim aff(P ′(i)) � 1, by the choice of ε and Proposition 1.
Therefore, the set P has a cover consisting of |I1| lines and, consequently, |I1| � s, by
the choice of s. The inequality |I2| � s can be proved by analogy. Since I1 ∩ I2 = ∅, the
condition

q � |I1| + |I2| � 2s (11)

is valid.
It can be easily verified that the stronger inequality q � 2s + 1 holds as well. Indeed,

otherwise the committee Q of 2s elements can be transformed by eliminating an arbitrary
element (see, for example, Mazurov, 1971), into an affine committee separating the sets
A and B and consisting of 2s − 1 elements. But this contradicts (11). The theorem is
proved.

COROLLARY 4. The PASC-GP problem is NP-complete in the strong sense. The MASC-
GP(n) and the MASC-GP problems2 are NP-hard.

2Similarly to MASC-GP(n), the MASC-GP problem is a modification of the MASC problem with an
additional constraint on general position.
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COROLLARY 5. The problem of k-polyhedral separability with a given formula formu-
lated in Zn within an arbitrary fixed n > 1 is NP-complete in the strong sense even under
an additional constraint on general position of sets to be separated.

COROLLARY 6. The OCP problem is NP-hard even under the following additional con-
straints:

1. the dimension of the input feature space is an arbitrary fixed n > 1;
2. an activation function of the output neuron is defined by the formula

fq+1(x) =

{
1, if

∑n
i=1 xi > 0,

−1, otherwise;

3. the set of elements of training sample (2) is in general position.

4. Approximation Algorithm

In this section, a new approximation algorithm for the MASC-GP(n) problem is pre-
sented. Actually, this algorithm is a modification of the known approximation algorithm
(Khachay, 2006b) for the more general MASC problem. This modification effectively
uses additional constraints to improve its approximation ratio.

Introduce some necessary notation and definitions. Let an instance of the MASC-
GP(n) problem be defined by some finite set Z = A ∪ B ⊂ Qn.

DEFINITION 4. A subset Z ′ = A′ ∪ B′, where A′ ⊆ A, B′ ⊆ B, is called an affine
separable subset (of the set Z), if there exist a vector c ∈ Rn and a number d ∈ R such
that {

cT a − d > 0, (a ∈ A′),

cT b − d < 0, (b ∈ B′).
(12)

Denote a solution set of system (12) by S(Z ′).

DEFINITION 5. An affine separable subset Z ′ is called a maximum (by inclusion) affine
separable subset of the set Z, if for each z ∈ Z \ Z ′

S(Z ′ ∪ {z}) = ∅.

Denote by M(Z) the set of maximum affine separable subsets of the set Z. One of
the alternatives below is valid.

1. The set Z is affine separable, i.e., M(Z) = {Z}. In this case, for an arbitrary pair
(c, d) ∈ S(Z), the finite sequence Q = (cT x − d) (consisting of a single
element) is a solution of the problem MASC-GP(n).
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2. There exists a subset Z ′ ⊂ Z, Z ′ �= Z such that Z ′ ∈ M(Z). In this case, any
minimum affine committee separating the sets A and B consists of more than one
element.

The following proposition is valid.

PROPOSITION 2. Let an affine committee separating the sets A and B, consists of p

elements. There exist subsets Z ′
1, . . . , Z

′
p, Z ′

i ∈ M(A ∪ B) (not necessary mutually
different) such that, for any pairs (ci, di) ∈ S(Z ′

i), the finite sequence (f1, . . . , fp),
where fi(x) = cT

i x − di, is also an affine committee separating the sets A and B.

This proposition implies that it is convenient to describe solving techniques for the
MASC-GP(n) problem in terms of a graph of maximum affine separable subsets of the
set Z = A ∪ B.

DEFINITION 6. A finite graph GZ = (V, E) is called a graph of maximum affine sepa-
rable subsets of the set Z, if V = M(Z) and, for each {Z ′

1, Z
′
2} ⊂ V,

{Z ′
1, Z

′
2} ∈ E ⇐⇒ Z ′

1 ∪ Z ′
2 = Z.

For every set Z being in general position such that Z = A ∪ B, the graph GZ can be
constructed according to the following simple algorithm.

Algorithm 1. Constructing the graph GZ

1. Initiate V = ∅ and E = ∅.

2. For each ζ ⊂ Z, |ζ| = n (since Z is in general position, by the condition, such a
subset ζ exists),

(a) Construct a hyperplane containing the subset ζ. Let it be defined by
the equation H(x) = 0. Because of general position of the set Z, such a
hyperplane is unique, and

H(x) �= 0 (x ∈ Z \ ζ).

(b) Define sets X1 and X2 by the equalities

X1 = ζ ∪ {a ∈ A | H(a) > 0} ∪ {b ∈ B | H(b) < 0},

X2 = ζ ∪ {a ∈ A | H(a) < 0} ∪ {b ∈ B | H(b) > 0}.

(c) For each i ∈ {1, 2},

i. exclude from V all the elements Y ∈ V such that Y ⊂ Xi;
ii. if there are no elements Y ∈ V such that Xi ⊆ Y, then set

V = V ∪ {Xi}.

3. For each pair e = {Z ′
1, Z

′
2} ⊂ V such that Z ′

1 ∪ Z ′
2 = Z, set E = E ∪ {e}.



230 M. Khachay, M.Poberii

Correctness of the presented above algorithm easily follows from the boundary solu-
tions principle (Eremin, 1975) for systems of linear inequalities. Particularly, if the set Z

is affine separable then the resulted graph has the form GZ = ({Z}, ∅), as expected.

Let us go through the main algorithm. Let Z = A ∪ B ⊂ Qn and |Z| = m.

Algorithm 2. Greedy Committee
1. Construct the graph GZ = (V, E).
2. If V = {Z} then define a finite sequence K = (Z), qmin = 1 and go to Step 4,

otherwise define qmin = ∞.

3. For each ζ ∈ V,

3.1 define the finite sequence K(ζ), the set J, and the number q(ζ) by the equal-
ities K(ζ) = (ζ), J = Z \ ζ, and q(ζ) = 1;

3.2 while J �= ∅, repeat the following steps

3.2.1 find {Z ′, Z ′ ′ } = argmax {|X1 ∩ X2 ∩ J | : {X1, X2} ∈ E};
3.2.2 add the sets Z ′ and Z ′ ′ to the sequence K(ζ), redefine

J = J \ (Z ′ ∩ Z ′ ′) and q(ζ) = q(ζ) + 2.

3.3 if q(ζ) < qmin then set K = K(ζ) and qmin = q(ζ).
4. Let K = (Z ′

1, . . . , Z
′
qmin

). For each i ∈ Nqmin define a function fi(x) =
cT
i x − di, where (ci, di) is an arbitrary element of S(Z ′

i). The finite sequence
Q = (f1, . . . , fqmin) is a required affine committee separating the sets A and B.

The following assumption is necessary.

ASSUMPTION 1. Let for every affine inseparable set Z = A ∪ B for some t there exist
subsets Z ′

0, Z
′
1, . . . , Z

′
2t ∈ V (not necessary mutually different) such that

{Z ′
2j−1, Z

′
2j } ∈ E (j ∈ Nt)

and, for an arbitrary (ci, di) ∈ S(Z ′
i), i = 0, 1, . . . , 2t, the sequence

Q = (cT
0 x − d0, c

T
1 x − d1, . . . , c

T
2tx − d2t)

is a minimum affine committee separating the sets A and B.

PROPOSITION 3. Let a set Z = A ∪ B ⊂ Qn, |Z| = m, define an instance of the
MASC-GP(n) problem. Complexity of the Greedy Committee algorithm is

O

((m

n

)3

+ Θm

)
,

where Θ is the complexity bound of solving a feasible system of at most m linear in-
equalities of n + 1 variables. The approximation ratio of the algorithm is O(m/n).

If Assumption 1 for the set Z is valid then the approximation ratio of the algorithm is
O(log m).
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Proof. 1. Complexity of the algorithm is defined by complexities of Steps 4 and 4, which
are O(

(
m
n

)3) and O(Θm), correspondingly.
2. Let us estimate the approximation ratio. If the set A ∪ B is affine separable then

the algorithm solves the MASC-GP(n) problem exactly. Otherwise, the algorithm finds
an affine committee of at most

2
⌈

�(m − n)/2�
n

⌉
+ 1

elements separating these sets. Indeed, by the construction, there exists
X ∈ V such that |X| � (m + n)/2. Further, on each Step 3.2.2. of the algorithm,
cardinality of the set J decreases at least by n.

Let Assumption 1 be valid. Then the MASC-GP(n) problem is equivalent to the cor-
responding instances of the known Set Cover problem [Johnson, 1974]. In this case, for
each ζ ∈ V, it is required to find a cover of the set J = Z \ζ by subsets Z ′

i ∩Z ′
j ∩J belong-

ing to {Z ′
i ∩ Z ′

j ∩ J : {Z ′
i, Z

′
j } ∈ E}, where GZ = (V, E). Actually, in Step 4 of the al-

gorithm, an appropriate instance of the Set Cover problem is solved by the known Greedy
(Johnson, 1974) algorithm, which has the approximation ratio of O(log |J |) = O(log m).
The proposition is proved.

Assumption 1 seems to be too tight but it should be noted that instances of the MASC
problem constructed in the known proofs of its hardness (particularly, in the proofs of
Theorems 5 and 6) are in agreement with this assumption.

Indeed, without loss of generality, one can assume that the set Z is not affine separa-
ble. Let Q = (f0, f1, . . . , f2s) be a committee constructed at the first part of the proof of
Theorem 6. Let us denote by A′(i)∪B′(i), i = 0, . . . , 2s, the subset of the set Z = A∪B

correctly separated by the hyperplane fi(x) = 0. By the construction (see Fig.2), for each
j ∈ Ns,

(A′(2j − 1) ∪ B′(2j − 1)) ∪ (A′(2j) ∪ B′(2j)) = Z.

Let a subset Z ′(i) be any maximum affine separable subset of the set Z such that A′(i) ∪
B′(i) ⊆ Z ′(i). Since Z ′(2j−1)∪Z ′(2j) = Z for each j ∈ Ns, then {Z ′(2j−1), Z ′(2j)}
is an edge of the graph GZ , and Assumption 1 holds.

REMARK 1. Results of the present section can be easily reformulated in terms of two-
layered perceptrons and the OCP problem.

5. Conclusions

As shown above, the minimum affine committee (MASC) problem is intractable not only
in the general case (when the dimension n is unbounded) but also in the case of a space
of fixed dimension n > 1 even under an additional constraint on general position of the
sets A and B. Particularly, the problem formulated on the plane is NP-hard. Further, the
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Table 1

The MASC problem: results

Problem Compl. status Approx. threshold Approx. ratio

MASC NP-hard O(log log log m) O(m)

MASC(n), n > 1 NP-hard ? O(m/n)

PASC NP-complete
(in the strong
sense)

— —

MASC-GP NP-hard ? O(m)

MASC-GP(n), n > 1 NP-hard ? O(logm)

PASC-GP NP-complete
(in the strong
sense)

— —

MASC problem is hardly approximable. If NP �⊂ DTIME(2poly(log n)), the approxi-
mation ratio of any polynomial-time algorithm can not be better than O(log log log m)
(in the worst case). But if the problem is formulated in a space of fixed dimension with
an additional constraint on general position and Assumption 1 is valid, then this problem
can be solved in polynomial time with approximation ratio of O(log m).

The results concerning the MASC problem and its particular cases are enlisted in Ta-
ble 1. Results obtained in this paper are marked by bold font, open questions are denoted
by the question sign. As corollaries, some new results concerning the known OCP and
k-polyhedral separability combinatorial optimization problems are also obtained.
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Aibi ↪u komitet ↪u poliedrinio atskiriamumo ir aproksimacij ↪u
sudėtingumas

Michael KHACHAY, Maria POBERII

Gerai žinoma, kad minimaliai afininė komitet ↪u atsikriamumo (the minimum affine separat-
ing committee – MASC – angl.) problema yra NP-sudėtingumo kombinatorinis uždavinys, pri-
taikomas kai kuriuose mašininio mokymo algoritmuose. Šiame darbe parodyta, kad MASC prob-
lema fiksuoto matavimo erdvėje, kai n > 1, yra bendru atveju eksponentinio sudėtingumo. Yra
pasiūlytas naujas polinominio sudėtingumo aproksimacinis algoritmas, nustatant aproksimacijos
eil ↪e bei sudėtingumo ribas.


