Coprocession of Data from Several Radars for Determination of Systematic Errors in Azimuth and Range

D. Bedin, A. Fedotov, S. Ganebniy, A. Ivanov, V. Patsko

Krasovskii Institute of Mathematics and Mechanics
UrB RAS, Ekaterinburg, Russia
NITA (New Information Technologies in Aviation, LLC), St. Petersburg, Russia

55th Israel Annual Conference on Aerospace Sciences
February 25–26, 2015
The influence of systematic errors on the tracks

track of radar #1

track of radar #2

aircraft real trajectory

track of radar #3
Suppose that several radars observe an aircraft. Every radar gives its own track. Here, three tracks are schematically shown. It is very good if these tracks are close to each other. But if they are far against each other, the true target trajectory will not be easily tracked in online mode.

The reason of divergence of the tracks is a presence of systematic errors in radar measurements.
Moscow air traffic control zone

Radar tracks of Moscow zone
Let we have radar measurement data from a lot of aircrafts for a large time period in a big geographic region. In this slide, for example, we see observations of air traffic in the Moscow air traffic control zone during 8 hours.

There is the following question. Can we identify the systematic errors of the radars in the considered zone? If yes, then we can use them in future in a trajectory tracking online process.

So, our aim is to identify the systematic errors for radars in a large zone. We should emphasize the following: In our approach, we don’t know what radars have no systematic errors, i.e., are ideal.
Пусть нам известны данные измерений нескольких РЛС за большой промежуток времени в большой географической зоне. Например, на этом слайде видим треки движений в Московской зоне за 8 часов. Вопрос: можно ли идентифицировать систематические ошибки в рассматриваемой зоне? Если да, то мы сможем использовать их в дальнейшем при наблюдении за конкретным самолётом в реальном времени.

Таким образом, наша цель — идентифицировать систематические ошибки РЛС в большой зоне.

Подчеркнём следующее: заранее мы не знаем, какие локаторы не имеют систематических ошибок, т. е. являются идеальными.
Radar measurements. Systematic errors
The primary surveillance radars (PSR) measure slant range to a target and its azimuth. So called the “secondary” surveillance radars (SSR) additionally receive a value of altitude from an aircraft. The accuracy of altitude measurement is suitable.

The systematic error in azimuth consists of rotation of observations on some angle. Very often, the systematic error in azimuth does not depend on geographic location of a target. In this case, we name this error as the “constant” systematic error in azimuth. A similar consideration is true for the systematic error in range.
Первичные трассовые радиолокаторы (PSR) измеряют наклонную дальность до цели и её азимут. Так называемые «вторичные» радиолокаторы (SSR) дополнительно получают от самолёта значение высоты. Точность измерения высоты можно считать удовлетворительной.

Систематическая ошибка по азимуту — это «подворот» наблюдений на некоторый угол. Очень часто систематическая ошибка по азимуту не зависит от географического положения цели. В этом случае называем такую ошибку «постоянной» ошибкой по азимуту. Аналогично для систематической ошибки по дальности.
Studies of other authors

Here, three papers devoted to determination of systematic errors are shown. Really, their number is larger and, possibly, we do not know many of them. The radar systematic error is often named as the radar (or, maybe, sensor) registration error. Another equivalent variant is the “bias estimation”.

Здесь показаны три статьи, посвящённые систематическим ошибкам. В действительности, их число больше, и, возможно, мы не знаем многие из них.

Систематические ошибки радиолокаторов часто называют «radar (sensor) registration errors», другой эквивалентный вариант — «bias estimation».
NITA company is our partner
We collaborate with NITA company from St. Petersburg. We use real data that were obtained at the Moscow and Novosibirsk air traffic control centers.

Now we present schematically three algorithms.
The first algorithm: finite-dimensional optimization procedure
The first algorithm is based on a finite-dimensional optimization procedure using Hooke – Jeeves method.
Initially, such an algorithm was developed for a case of constant systematic errors in azimuth and range.

Первый алгоритм базируется на конечно-оптимизационной процедуре, использующей метод Хука – Дживса.
Первоначально алгоритм был разработан для случая постоянных систематических ошибок по азимуту и дальности.
Systematic errors shift the tracks

Radar #1

Radar #2

Radar #3
For simplicity, let us consider the case when all the radars have the systematic errors in azimuth only.

In this slide, there are three tracks by three radars.
Aligning of the tracks

Radar #1

Radar #2

Radar #3
Aligning of the tracks

We can align the tracks through rotations of each track on some angle. These angles correspond to the systematic errors in azimuth taken with the opposite sign.

Мы можем совместить треки, подврачивая каждый из них на некоторый угол. Такие углы соответствуют систематическим ошибкам по азимуту, взятым с противоположным знаком.
Reconstructed track

Radar #1

"Reconstructed" track

Radar #2

Radar #3
Reconstructed track

In the process of finding rotation angles, we additionally build a “reconstructed” track, i.e., some kind of estimation for the true aircraft trajectory.

При нахождении углов вращения дополнительно строим «восстановленный» трек, т. е. некоторую траекторию, которая оценивает истинную траекторию самолёта.
The finite-dimensional optimization procedure minimizes D

$$D = \sum \sum (\delta_{ji})^2$$
The finite-dimensional optimization procedure minimizes D.

The sum of squared deviations between rotating radar tracks and this reconstructed track is calculated. This value D is used as a characteristic of quality for aligning process.

The finite-dimensional optimisation procedure minimises the value D.

Вычисляется сумма квадратов отклонений между подворачиваемыми треками и восстановленным треком. Величина D используется как характеристика качества процесса совмещения.

Процедура конечномерной оптимизации минимизирует величину D.
The arguments of optimization function

\[D(\Delta_1, \ldots, \Delta_k, x_1, y_1, z_1, \ldots, x_m, y_m, z_m) \]

\(\Delta_1 \) is a systematic error in azimuth of the first radar,

\(\ldots \),

\(\Delta_k \) is a systematic error in azimuth of the \(k \)th radar,

\(x_1, y_1, z_1 \) are 3D coordinates of the first vertex of the reconstructed track,

\(\ldots \),

\(x_m, y_m, z_m \) are 3D coordinates of the last vertex of the reconstructed track.
The arguments of optimization function

Here, the arguments of optimization function are shown.

Здесь показаны аргументы оптимизируемой функции.
Real tracks before aligning
Several radars in the Novosibirsk air traffic control zone observe an aircraft motion. This figure shows tracks before aligning, i.e., before correction on the systematic errors. The picture is made in middle scale. Therefore, a divergence of these radar tracks are not noticeable but it exists.

Несколько локаторов в Новосибирской зоне наблюдают за движением одного самолёта. Этот слайд показывает треки до совмещения, т. е. до коррекции на систематические ошибки. Изображение сделано в среднем масштабе. Поэтому расхождение треков не заметно, но оно существует.
Real tracks before aligning (enlarged fragment)
Here, we see an enlarged fragment of the tracks before aligning.

Здесь видим увеличенный фрагмент треков до совмещения.
Values of the systematic errors in azimuth

<table>
<thead>
<tr>
<th>PSR Location</th>
<th>SSR Location</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSR Irtish: 0.25°</td>
<td>SSR Kemerovo:</td>
<td>0.07°</td>
</tr>
<tr>
<td>PSR TRLK: 0.15°</td>
<td>SSR Kolpashevo:</td>
<td>0.13°</td>
</tr>
<tr>
<td>PSR Krasnoyarsk: -0.56°</td>
<td>SSR Yeniseysk:</td>
<td>-0.51°</td>
</tr>
<tr>
<td>PSR Tolmachevo: 0.54°</td>
<td>SSR Krasnoyarsk:</td>
<td>-0.49°</td>
</tr>
<tr>
<td>SSR Irtish: 0.23°</td>
<td>SSR Novokuznetsk:</td>
<td>0.13°</td>
</tr>
<tr>
<td>SSR TRLK: -0.13°</td>
<td>SSR Tolmachevo:</td>
<td>0.69°</td>
</tr>
</tbody>
</table>
This is the same fragment after the aligning corrections. The values of the systematic errors are shown.

Тот же фрагмент после учёта коррекций совмещения. Указаны значения систематических ошибок радиолокаторов.
The dependence on the azimuth of an aircraft for the systematic error in azimuth of the Volgograd radar
The dependence on the azimuth of an aircraft for the systematic error in azimuth of the Volgograd radar

However, we rapidly verified that the systematic errors of some radars are not constant. For example, this slide shows the dependence on the azimuth of an aircraft for the systematic error in azimuth of the Volgograd radar. This plot was made with the help of statistical analysis of a lot of trajectories.

Однако мы быстро убедились, что систематические ошибки некоторых РЛС не являются постоянными. Например, этот слайд показывает зависимость систематической ошибки по азимуту РЛС «Волгоград» от азимута цели. Зависимость получена при помощи статистического анализа большого числа траекторий.
The field of the systematic error in azimuth for the Kemerovo radar in polar coordinates

Value of error:
-1.14546
-0.859098
-0.572732
-0.286366
0
0.286366
0.572732
0.859098
1.14546
The algorithm of estimation of the systematic errors by means of the finite-dimensional optimization procedure was modified for some cases when the systematic errors depend on mutual disposition of an aircraft and a radar. But in this case, the algorithm contains a lot of empirical constructions.

Here, we see a field of the systematic error in azimuth for the Kemerovo radar in polar coordinates.

Алгоритм оценивания систематических ошибок был модернизирован на некоторые случаи, когда систематические ошибки зависят от взаимного расположения самолёта и локатора. Однако модернизированный алгоритм содержит много эмпирических конструкций.

На этом слайде видим поле систематических ошибок по азимуту для РЛС «Кемерово» в полярных координатах.
The second algorithm: set-valued function and single-valued selector
The second algorithm was, from the beginning, focused on variable systematic errors.

Второй алгоритм был с самого начала ориентирован на переменные систематические ошибки.
The model of radar observation

The following equation describes a measurement of the radar i at instant t:

$$z_i(t) = x(t) + s_i(x(t)) + w_i(t),$$

$$z_i, x \in X \subset \mathbb{R}^2, \quad s_i \in S_{0i}(x(t)) \subset \mathbb{R}^2, \quad w_i \in \mathbb{R}^2.$$

- $z_i(t)$ is a measurement,
- $x(t)$ is the true location of an aircraft at instant t,
- $X \subset \mathbb{R}^2$ is a set of all possible locations of an aircraft,
- $s_i(x)$ is a shift vector connected with the systematic error of the radar i,
- $S_{0i}(x(t)) \subset \mathbb{R}^2$ is a set of possible shift vectors,
- $w_i(t)$ is a random error vector.
Before consideration of the algorithm, let us show the observation equation. Here, $x(t)$ is the true location of an aircraft A at an instant t in the geocentric coordinates, $s_i(x(t))$ is a shift vector connected with the systematic error of the radar i. The systematic error depends on the true location of the aircraft. The symbol $z_i(A, t)$ is a measurement of the radar i at the instant t for the aircraft A. The random error is referred to w_i here. Characteristics of the random error are given.

Прежде чем рассматривать алгоритм, покажем уравнение наблюдения. Здесь $x(t)$ — истинное положение самолёта A в момент t в геоцентрической системе координат, $s_i(x(t))$ — вектор сдвига, связанный с систематической ошибкой локатора i. Систематическая ошибка зависит от истинного положения самолёта. Символ $z_i(A, t)$ означает измерение положения самолёта A локатором i в момент t. Символ w_i — случайная ошибка. Характеристики случайной ошибки известны.
Example of real data for 3 radars
Example of real data for 3 radars

This slide shows mutual configurations of measurements of three radars in the Novosibirsk air traffic control zone. There were several aircrafts in the 40 km × 40 km area at different time periods. We see that the mutual configurations do not almost change. Small changes can be explained by random errors in measurements.

The stability of mutual configuration of measurements is compatible with a hypothesis that the systematic errors depend, in the main, only on mutual disposition of a radar and a target.

The red marks connect configurations which belong to one aircraft.

Этот слайд показывает взаимные конфигурации измерений трёх локаторов в Новосибирской зоне. В области 40 км × 40 км было несколько самолётов в различные промежутки времени. Видно, что взаимные конфигурации почти не меняются. Небольшие изменения могут быть объяснены случайными ошибками в измерениях.

Стабильность взаимной конфигурации согласуется с гипотезой, что систематические ошибки зависят, в главном, только от взаимного расположения локатора и цели.

Красные отметки соединяют конфигурации, относящиеся к одному самолёту.
We interpret the systematic error as the shift vector \(s \). In the polar coordinates, this vector has the following components:

\[
 f_i(x) = \begin{bmatrix} f_i^r(x) & f_i^\alpha(x) \end{bmatrix}^T, \quad f_i(x) = p_i(s_i(x) + x) - p_i(x).
\]

\(p_i : x \mapsto \begin{bmatrix} r(x) & \alpha(x) \end{bmatrix}^T \); \(x \in X, \quad r(x) \in \mathbb{R}_+, \quad \alpha(x) \in S^1 \).
We will interpret the systematic error of radar as a vector that depends on the geographic coordinates of observed target. The vector consists of azimuth and range components.

Мы будем интерпретировать систематическую ошибку локатора как вектор, который зависит от географических координат наблюдаемой цели. Этот вектор имеет компоненты по азимуту и дальности.
Vector field of the systematic error
Our aim is to obtain the vector field of systematic errors for every radar in the observation region. This picture shows an example of vector field of systematic errors for one radar.

Наша цель — получить векторное поле систематических ошибок для каждого локатора в рассматриваемой зоне. Этот слайд показывает пример векторного поля для одного из локаторов.
Partition of the observation zone into cells
Partition of the observation zone into cells

\[\chi = \{ \bar{x}(j) \}, \ \bar{x}(j) \in X \]
Partition of the observation zone into cells

We divide the observation zone into small regions with square shape. The side of every square is about 50 km.

Разбиваем зону наблюдения на маленькие квадраты. Сторона каждого квадрата — примерно 50 км.
The model of radar observation in a cell

Observation model

\[z_i(t), x(t), s_i(x), w_i(t) \in \mathbb{R}^2, \quad i = 1, m \]
\[z_i(t) = x(t) + s_i(x(t)) + w_i(t) \]

<table>
<thead>
<tr>
<th>Moving object</th>
<th>Systematic error</th>
<th>Random error</th>
</tr>
</thead>
<tbody>
<tr>
<td>[x(t) = x_0 + g(t, \theta)]</td>
<td>[?]</td>
<td>[\mathbb{E}{w_i(t)} = 0]</td>
</tr>
<tr>
<td>[\theta \in \mathbb{R}^p]</td>
<td></td>
<td>[\text{Var}{w_i(t)} = V_i(x(t))]</td>
</tr>
</tbody>
</table>

What vectors \(s_i \) are compatible with measurements \(z_i \) in the considered cell?
In every square, we take into account only the measurements which belong to sections of practically straight-line motion of aircrafts. We know characteristics of the random errors but we do not know the systematic errors. So, the main question is the following. What is the set of shift vectors s_i which are compatible with the measurements z_i in the considered cell?

В каждом квадрате принимаем во внимание только те измерения, которые относятся к участкам практически прямолинейного движения самолетов. Известны характеристики случайных ошибок, но мы не знаем систематические ошибки. Таким образом, главный вопрос следующий. Что представляет собой множество систематических ошибок s_i, которые совместимы с измерениями z_i в рассматриваемой ячейке?
Uncertainty of vector s
Measurements of three radars at the same instant are shown here. Even in the absence of random errors, we can not reconstruct exact location x of an aircraft. Any point near this configuration of measurements is suitable for the true location x of the aircraft.

Здесь показаны измерения трёх локаторов в один и тот же момент времени. Даже при отсутствии случайных ошибок мы не можем восстановить точное положение x самолёта. Любая точка около конфигурации замеров возможна как истинное положение самолёта.
The shifts of true systematic errors belong to an affine manifold with the dimension 2.
We will name this manifold as the “uncertainty set”.
Taking into account random character of measurements, we will use the mean uncertainty set.
Uncertainty of vector s

If there are 3 radars for observation, the space of shifts has the dimension 6. In such a case, the shifts of true systematic errors belong to an affine manifold with the dimension 2. We will name this manifold as the “uncertainty set”.

Если есть 3 локатора, пространство сдвигов имеет размерность 6. В таком случае сдвиги истинных систематических ошибок принадлежат аффинному многообразию размерности 2. Назовём это многообразие «множеством неопределенности».
Constructions in the space of all vectors s_i for three radars
In this picture, the 3-dimensional space is shown conditionally instead of the space with the dimension 6. The affine manifold of the dimension 2 is replaced by a manifold of the dimension 1. The presence of random errors shifts this manifold in the shift space. Let us fix the “mean” manifold.
Constructions in the observation zone
We see the mesh of “small regions” here again. There is the affine manifold in every cell.

Снова сетка «малых районов». В каждой ячейке — аффинное многообразие.
The symbol f corresponds to the systematic errors in polar coordinates.

We can get the estimate for systematic errors as set-valued function $F(\cdot)$ which value at every \tilde{x} is the mean uncertainty set.

We must choose an appropriate selector $f(\cdot)$. One of the rational conditions is in the smoothness of the function $f(\cdot)$. Let us introduce an appropriate functional:

$$J(f) = \sum_{\tilde{x}, \tilde{y} \in \chi, \tilde{x} \neq \tilde{y}} \frac{\|f(\tilde{x}) - f(\tilde{y})\|_F^2}{\|\tilde{x} - \tilde{y}\|_X^2},$$

$$J(f) \geq 0, \quad J(f) = 0 \iff f \equiv \text{const}.$$
Set-valued function

We have a set-valued function as an estimate for the systematic errors, and we must choose an appropriate selector. Consider the functional J of smoothness for the systematic errors. By minimizing J on the set-valued function, we get a single-valued function.

Имеем многозначную функцию в качестве оценки систематических ошибок. Попробуем выбрать подходящий однозначный селектор. Рассмотрим для систематических ошибок функционал гладкости J. Минимизируя J на многозначной функции, получаем однозначную функцию.
If we want to choose the function $f(\cdot)$ outside the graph of $F(\cdot)$ but close to it, then we can use the functional I of a penalty:

$$I(f) = \sum_{\tilde{x} \in \chi} (f(\tilde{x}) - f_0(\tilde{x}))^T P(\tilde{x}) (f(\tilde{x}) - f_0(\tilde{x})).$$

Here, $P(\tilde{x})$ is the singular covariation matrix that corresponds to $F(\tilde{x})$.

The total functional is

$$(1 - \lambda)J(f) + \lambda I(f), \quad \lambda \in (0, 1).$$
Additionally, we can introduce a functional I which makes a penalty on choosing values outside the set-valued function. The coefficient $\lambda \in (0, 1)$ regulates influence of functionals J and I on the result.
The field of the systematic error in azimuth for Kemerovo radar
In this slide, we can see the field of the systematic errors in azimuth for Kemerovo radar. This field was obtained by the algorithm described above.

На этом слайде показано поле систематических ошибок по азимуту для РЛС «Кемерово». Это поле получено на основе описанного алгоритма.
The third algorithm: calculations without using time stamps
In the analysis of real data, we found out that there are errors in time stamps of measurements.

The following question has appeared: Can we do not use time in the computation of the uncertainty sets?

A corresponding algorithm was elaborated.

При анализе реальных данных обнаружилось, что присвоение времени в данных тоже содержит ошибки.

Возник следующий вопрос: можно ли не использовать время при построении множеств неопределённости?

Был разработан соответствующий алгоритм.
There are tracks from “red” radar.
There are tracks from the “green” radar.
Ds_{21} is the difference shift vector.
This slide explains the main idea of the third algorithm. Namely, the difference vector between two vectors of the systematic errors can be geometrically determined without using time stamps on the crossing air traffic routes with straight motion sections (and not only in this case).

Этот слайд поясняет основную идею третьего алгоритма. А именно, геометрически, без использования отметок времени, определяется вектор разности сдвигов систематических ошибок на пересекающихся участках прямолинейных движений (и не только в этом случае).
Geometric alignment of tracks from two radars

\[Ds_{21} \]

\[s_1 \] is the systematic error shift of “red” radar;

\[s_2 \] is the systematic error shift of “green” radar;

\[Ds_{21} \] is the difference shift vector.
The difference shift vector is determined separately for every pair of radars. This vector gives an affine manifold with the dimension $n - 2$ in the space of the systematic error shifts where n is the whole dimension of the space of the systematic error shifts.

Taking into account all the “pairwise” manifolds, we get the affine uncertainty set with the dimension 2 as before. But now it is obtained without time.

Thus, we get uncertainty set in every “cell”. We employ further the algorithm of choosing a selector that uses the functional J of smoothness, and the functional I of penalty.

Besides, we can use mean-square functional for choosing the best constant systematic errors in azimuth and range.
Разностный вектор сдвигов определяется раздельно для каждой пары локаторов. Этот вектор задаёт аффинное многообразие размерности $n - 2$ в пространстве сдвигов систематических ошибок, где n — размерность всего пространства сдвигов.

Принимая во внимание все «парные» многообразия, получаем аффинное многообразие размерности 2, как и раньше. Но сейчас оно построено без учёта времени.

Таким образом, получаем множество неопределенности в каждой клетке. Применяем далее алгоритм выбора селектора, который использует функционал гладкости J и функционал штрафа I.

Кроме того, можем использовать средне-квадратичный функционал для нахождения наилучших постоянных систематических ошибок по азимуту и дальности.
Results of the algorithm work using real data

Before aligning
After aligning

Here, we used the best constant systematic errors in azimuth and range for aligning.
This slide shows the effect of finding the best constant systematic errors. We see two pictures. The left one gives a fragment of trajectories before aligning, the right one is after aligning. The corrections by the best constant systematic errors in azimuth and range made closer all the tracks of distinct radars.

Этот слайд показывает эффект от нахождения наилучших постоянных систематических ошибок. Представлены две картинки. Левая даёт фрагмент треков до сведения, правая — после сведения. Коррекции на наилучшие систематические ошибки по азимуту и дальности сближают РЛС-треки.
Model data

latitude, deg

longitude, deg
Finally, let us show simulation results on the basis of model data. Here, we see 60 trajectories which are going from the center of the picture. The coordinates in the picture are geographic. Every trajectory is observed by 12 radars. The observation zone of each radar is bounded.

For each radar, we simulate the constant systematic errors in azimuth (up to 5°) and range (up to 1000 m).

В заключение покажем результаты вычислений для модельных данных. Мы видим 60 траекторий, которые выходят из границы круга в центре. Используются географические координаты. Наблюдения ведутся 12 локаторами. Зона действия каждого локатора ограничена. Для каждого локатора вводятся постоянные систематические ошибки по азимуту (до 5°) и дальности (до 1000 м).
Results of the algorithm work using model data

latitude, deg

longitude, deg
This is the result of trajectory alignment after the correction on the constant systematic errors.

We used the third algorithm. The result is quite suitable.

In this slide, we present our publications.

На этом слайде представлены наши публикации.