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Trajectory Tracking
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Our optimization object is the IMM (Interacting Multiple Model) algorithm of
trajectory tracking (the tracker). In trajectory tracking, the subjects are a moving
object and the trajectory of its motion. The trajectory can be curvylinear. The
measurements of the object position with random noise appear consequently at
discrete time instants.




Trajectory Tracking
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The measurements of the object position with random noise appear consequently
at discrete time instants.




Trajectory Tracking

The IMM algorithm is a filtering procedure. Using measurements up to the
current time instant, it elaborates the esitmate of the position and the velocity.
Now, at the instance t1, there is a single measurement y1 and the estimate &(t1)

(blue circle with arrow) can use only this measurement.
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Now, there are two measurements y1 and y2.

Optimization Object
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Now, there are two measurements y1 and y2.  The estimate &(t2) uses both of
them.

Optimization Object
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Trajectory Tracking

And so on.
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The estimates (blue circles with arrows) differ from the true positions (magenta
dots) at the corresponding instants. These differences are subject of optimization.
The less the differences are, the better the tracking algorithm is.
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The estimates (blue circles with arrows) differ from the true positions (magenta
dots) at the corresponding instants. These differences are subject of optimization.
The less the differences are, the better the tracking algorithm is.




Trajectory Tracking

Trajectories can be very different, a tracking algorithm has to handle all possible
tragectories. For example, it has to recognize the turn in this trajectory after the
rectilinear motion section. If not, the errors will be large. The IMM handles this

difficulty well.




Trajectory Tracker by NITA

Our optimization object is the trajectory tracking program by
the NITA company
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http://nita.ru/en/main

We collaborate with the NITA company and optimize their trajectory tracker. This
company is the leader in Russia in the Air Traffic Management (ATM) solutions.
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Planar Trajectories of Aircraft
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Planar Trajectories of Aircraft
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This is a real aircraft trajectory from flightradar2. com.
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Planar Trajectories of Aircraft

A trajectory of aircraft is close to a sequence of straight line
and circular arc segments.
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This is a simple, but sufficient model of the motion that we use.

Optimization Object




Planar Trajectories of Aircraft

Approximate planar dynamics:

TN = VCOSp,

Tp =vsing,

p=ufv,

v=w.
e xy, xg are the Cartesian coordinates in the plane;
@ v, p are the aircraft speed and course;

e u and w are the tangential and orthogonal accelerations,
(unknown controls!)

Typical motion types:
e u(t) =0, w(t) =0 — constant velocity (CV);
e u(t) = const, w(t) = 0 — coordinated turn (CT);

e u(t) =0, w(t) = const — constant acceleration (CA).

Optimization Object
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Measurements

The measureable part of the state vector: the “geometrical”

part
TN
TG = .
G TE
The measurement vector

TN wN
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Measurements are made at discrete time instants
y(ts) = x(t) +nts),  t € {t1,ta,t3,..., tn}
with random errors. For example,

Optimization Object




Measurements
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This is a fragment of a real measurement track.
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Measurements
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This is a fragment of a real measurement track.




Filtering Problem

It is needed to make an estimate Z(t,) (or Z,) close to
Z(tn;u(-), w(-)) using the history of measurements up to the
instant ¢,

Y,={y(ti): i=1,...,n}.
The estimator Z(t,) is a response to Yy:
Z(tn) = Z(tn; Yn) .

Performance criterion usually is

MSE {5(1,)} = E{ (200 ¥2) et ul0() |

Optimization Object




Filtering Problem
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The filtering problem for the trajectory tracking is classic. There are a lot of
publications about it.




Interacting Multiple Model Algorithm

Today, the IMM, Interacting Multiple Model algorithm, is the state-of-the-art
solution for real-life problems with abruptly changing trajectories. Therefore, the
IMM is widely applied in ATM where the air traffic controller side has to be ready

for unscheduled sudden maneuvers of an aircraft.




Interacting Multiple Model Algorithm

This is the scheme of IMM. Its core is the set of different models. Each model

corresponds to some motion regime.
The Transition Probabilities Matriz (TPM) determines the switches between

regimes (this is the parameter of the algorithm,).

! ¢ Bt

‘ transition
probabilities
matrix




Interacting Multiple Model Algorithm

This is the scheme of IMM. Its core is the set of different models. Each model
Each model has its own dynamics and

corresponds to some motion regime.
elaborates the partial estimate &; of x at the last time instant (here, it is t3). The

final estimate is a mixz of these partial ones. The jth dynamics include the system

noise v; with a covariance matriz Q;.
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Interacting Multiple Model Algorithm

Each model has its own dynamics and elaborates the partial estimate Z; of x at the
last time instant (here, it is t3). The final estimate is a mix of these partial ones.
The jth dynamics include the system noise v; with a covariance matriz Q;.
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Black Box Concept

Algorithm for aircraft tracking

radar position
measurements estimate

RAREE

algorithm parameters

Any trajectory tracking algorithm can be imagined as a black box: the radar
measurements are at input, the position estimates are at output. There are some
parameters influencing the algorithm behavior and the estimation quality. We
optimize the tracker parameters without using any specific features of the IMM
algorithm. We keep such a straightforward approach as we do not want to deviate
from the existent peculiarities and parameters of the NITA program since they are
grounded by practical demands of the real ATM system.




Standards by EUROCONTROL

o EUROCONTROL Specification for ATM Surveillance Sys-
tem Performance, Std.

https://www.eurocontrol.int/publication/
eurocontrol-specification-atm-surveillance-
system—performance-esassp

o EUROCONTROL Standard for Radar Surveillance in En-
Route Airspace and Major Terminal Areas, Std.

https://www.eurocontrol.int/publication/

eurocontrol-standard-radar-surveillance-

en-route-airspace-and-major-terminal-areas
How do we assess the quality of estimation?

In ATC, there are many norms and specifications about the quality of estimation.
We follow Eurocontrol specifications in general.

Optimization Problem
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Standards by EUROCONTROL

en-route airspace: major terminal area:
type of At,=12s, 0, = 140 m At.,=4s,0,=70m
motion along across along across
deviation deviation deviation deviation
initialization phase 0,=999m | 0,=999m | 0, =999 m | 0, =999 m
At=30c | At=30c | At=10¢ At =10c¢
acceleration-free motion op,=120m | 0, =120m | 0, =60 m o, = 60 m
u=0,w=0
along acceleration o, =28m | o,=145m | 0, =180 m | o, =60 m
u=0,w#0
turning o,=180m | 0, =180 m | 6, =100 m | o, = 100 m
w0, w=0
transition op,=240m | 0, =375 m | 0, = 140 m | o, =230 m
u=0,w=0—>u#0,w=0| At=35s | At=35s | At=24s At=24s
transition op,=160m | 0, =200m | 0, =110 m | 0, = 180 m
w0, w=0—->u=0,w=0| At=70s | At=85s | At=065s At =65 s
transition op,=425m | 0, =220m | 0, =310 m | 0, =120 m
u=0,w=0—-u=0,w#0| At=60s | At=68s | At=50s At =60 s
transition 0,=99m | 0,=999m | 0, =999 m | 0, = 9999 m
u=0,w#0—=>u=0,w=0| At=60s | At=68s | At=50s At =60 s

This is the table of prescribed by the EUROCONTROL standard upper limits oy
of root mean squared error (RMSE) in the lateral and longitudinal channels in
dependence on the type of motion segment (acceleration free, turning, transition
between turning and acceleration free, etc.). Also, the upper limits on the
transitional duration time At are given.
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In this picture, the true trajectory is the thick multicolor line line, and the estimated positions are
the black dots. The true trajectory is known during the simulations or, maybe, it can be measured
by more accurate sensor (in some cases, GPS can be such a sensor). In the standards (by
EUROCONTROL or in Russians standards too), it is conventional to project the difference
between the estimate TG and the true xg positions onto directions along e; and across ey, the
trajectory, in other words, onto the longitudinal and lateral directions.

In the straight line motion segments (blue parts of the solid line), the upper RMSE limits are
strict. In the turns (green segment), the limits are relazed. The transitional segments are red. The
durations of transitional processes are limited too.




Esimate—Truth Differences
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We can consider the upper RMSE limit & as a function of time t along the
tragectory. Then, we can compare the differences o — xa and their root mean
squared error with it.

Optimization Problem

[e] Je}



Esimate—Truth Differences
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Also, in the standards, there are upper RMSE limits on differences of the velocity
magnitude v

Optimization Problem

[e] Je}



Esimate—Truth Differences
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Also, in the standards, there are upper RMSE limits on differences of the velocity
magnitude v
and the course .

Optimization Problem

[e] Je}



The Standards Criticism

There are some questions about the usage of the standards.

Q@ The accuracies of sensors are very different and differ from
the ones described in the standards. What do we do if the
sensor error is one half of the standard value? The rate of
measurement arrival also varies.

@ The aircraft have different maneuverability. This influences
the estimate error level and duration of the transitional
processes. What formulas can describe this dependence?

@ Transitions between some motion segments are not descri-
bed in the standards. Where can we get the limit values for
these transitions?

Optimization Problem
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Cramér—Rao Lower Bound as a Reference

An attempt to answer the questions above leads us to the
use of the Cramér—Rao lower bound (CRLB) instead of the
upper RMSE limits from the standards as the reference
accuracy.

The CRLB is the lower bound for the mean squared error
and the covariance matriz of the error (in a vector case) for the
unbiased estimates.

Real trajectory tracking algorithms usually produce biased
estimates. Nevertheless, the CRLB value describes well
potential accuracy of these algorithms.

The CRLB has an essential advantage: its value can be
evaluated explicitly using the true trajectory and characteristics
of the sensor system.

Optimization Problem




Cramér—Rao Lower Bound as a Reference

E{&(tn; Yn)} = z(tn; 0),
u(t) = u(t; 0), w(t) = w(t;0).

- éh“ti;HT _10x(t;; 0
Tt ) = 32 PPUEO gy 0200)
i=1

B{ (@ (s Ya) — 2t 0)) (#(tn: Ya) = () } =

If the controls u and w are paramtrized by some parameters 0, then we can
calculate the partial derivatives of the true states x(t;) and the Fisher information
matriz J using the measurement noise covariances H;. After matriz inversion,
we get the lower bound formula. Here, = denotes the partial order in symmetric
matrices in terms of positive semi-definiteness (Loewner order).

Optimization Proble




Cramér—Rao Lower Bound as a Reference

LN =VCOSp,

T =vsingp,

¢ =u/v,
vV=w.
92[90T ug  wo tl Uy wq t2 U2 W2 ]T

For example, the parameters 6 of the controls u and w can consist of the values u;
and w; of a piecewise-constant function of the time together with the switching
instants t*.

ation Problem




IMM Method vs. CRLB
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For this simpe trajectory with one straight-line and one coordinated turn
segments . ..




IMM Method vs. CRLB
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IMM Method vs. CRLB
Longitudial Dev.

0
The accuracy of the real IMM algorithm is near CRLB, as you can see in this

graph. The ratio of these values is constant almost always.




Performance Criteria
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The tracking quality criteria can be formulated using the CRLB as follows. We
consider the relative longitudinal and lateral deviations and compare them with
the CRLB values “projected” onto the corresponding directions.

Optimization Problem
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Performance Criteria

z(ti) = ¢f (t:)(2(t:) — x(ts)),

l’l(ti)
Vel ) tent:)

a=E{X}®}.

We consider the relative longitudinal and normal deviations X; and X, and
want to use the expectations of mean squared deviations. (Instead of them, the
empirical mean squared deviations are used in the algorithm.)

Xi(t;) =

9

Optimization Problem




Performance Criteria
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Cn =V E{X%(t)}

We consider the relative longitudinal and normal deviations X; and X, and
want to use the expectations of mean squared deviations. (Instead of them, the
empirical mean squared deviations are used in the algorithm.)

Optimization Problem




Performance Criteria
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Similarly, we consider the relative deviations of course and velocity magnitude.

Optimization Problem
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Performance Criteria

ti) _ l’v(ti)
Vel (ti)J (ti)e(t:)

I

co = VE{XZ(1)}.

Similarly, we consider the relative deviations of course and velocity magnitude.

Optimization Problem




Performance Criteria

co = \/E{X2(t)}.

Similarly, we consider the relative deviations of course and velocity magnitude.

Optimization Problem




Performance Criteria

The Mahalanobis distance in the “geometric” coordinates is

Xoa(ti) = \/(:Eg(t,-) —xza(ti) " (Ja(ti) " (Ea(ti) — za(t),

and the RMS deviation of the Mahalanobis distance in the total
state vector space is

Xaa(ti) = /(@5 — a(t))T(J (6)~ (&1 — (1)),

Coq = \/E{ng(t)} Cqd = \/E{de(t)}.

Additionally, we formulate the complex criteria caq and c4q. They measure the
relative deviations in many channels simultaneously.

Optimization Problem




The Problem

(Cl(a)a Cn(a)a Co (a)7 Ctp(a)v CQd(a)a C4d(a>) — min,
Amin < a4 < Gmag-
We have a multicriteria optimization problem with the parameter vector a. There

are 16 parameters of the IMM implementation by NITA; therefore, a € R'6. All
the parameters are subject of box constraints.

on Problem




Genetic Algorithm

Calculation of the criteria »
for all individuals

!

| Assignment of immortality flag |

Removal of individuals @

with bad criteria

Immortal
individuals

—
=

Genetic operators

Directed breeding | Crossover | Mutations

!

We use a genetic optimization algorithm since the parameters of the NITA IMM
have complex and non-differentiable infulence on the performance metrics. The
operations of the genetic algorithm (the directed breeding, the crossover, and the
mutation) are quite usual. There is a population consisting of individuals. Every
individual is connected with some point a in the space R of parameters to be
optimized (of the trajectory tracker in our case).




Multicriteria Optimization

A
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In this figure, the individuals are depicted in the criteria space (the criteria values
are assigned to each individual). Since we have many criteria, we can have many
minimum points. These individuals are marked as immortal.

Optimization Method
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We use a big dataset for optimization.
We want to calculate the estimates of the criteria for each individual using the
whole set, but it will be very expensive from the computational point of view.
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One Batch per Generation
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Instead of that, at every generation of the evolution process, we calculate
the “preliminary” estimates on a small batch and then upgrade them at the
succeeding generations. In the figure, a batch is shown ...

zation Method




One Batch per Generation
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...and this is another batch.

Optimization Method




Estimates of the Criterion. Selection

The “true” criterion value ¢; is the expectation

= VE{XI®)-

We replace the expectation by its plug-in estimator

Cln_ E Xlz? Cln_\/ ,n

N is the number of the trajectories xy(-),
Ny, is the number of the measurements in x(-),
n= Zszl N is the total number of the measurements.

. P .
Cln —— €1, E{¢,} =q.
n—oo

Optimization Method




Estimates of the Criterion. Selection

We use the normal-based confidence interval

(6] 0 6] = [G1n — Sen(C10)Za 2, Cn + Sen(Ein)za)2) »

where 2,/ is the (1 — (1 — «)/2)-quantile of N'(0, 1), and

n
O 4 P
m,. = — E X7 se, (¢ = ———\/m;’ —(C
Iin n < - 1,i n( l,n) QCln\/ﬁ In I,n
1= ’

We estimate the criteria using simulations. There are random errors in their
values.

For this reason, the lower and upper confidence bounds éém(a)(a), ézn(a)(a) are
used in the selection procedure to prevent deletion of the individuals whose current
values of ¢; are slightly worse than others due to random influence.

Note that the number of samples n(a) in the estimates é;(a) and their bounds

éi n(a)(a), é;‘n(a>(a) depends on the individual a since the “lifetime” of the

individuals can differ.




Estimates of the Criterion. Selection
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The

criterion estimates ¢; are depicted for three individuals a1, a2, and a3z with
the upper and lower bounds éé, ¢t of the confidence intervals.

Optimization Method
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Estimates of the Criterion. Selection
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During simulations, the estimates ¢; and the confidence intervals éé, ¢ are

changing. The width of an interval & — éi shrinks whlie the center ¢; drifts.

Optimization Method
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Estimates of the Criterion. Selection
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During simulations, the estimates ¢; and the confidence intervals éé, ¢ are

changing. The width of an interval & — éi shrinks whlie the center ¢; drifts.

Optimization Method




Estimates of the Criterion. Selection
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The individual a3 is removed from the population if its lower confidence bound
éé (a3) is greater than the minimum of upper confidence bounds mingep ¢¥(a).

Optimization Method
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Estimates of the Criterion. Selection

é;'le(a‘l)
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Cin
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A new individual as has the confidence interval [éﬁ n(a4)(a4),égn(a4)(a4)] that is wider

than the intervals of the “older” individuals since n(as) < n(ai),n(az). Despite the
estimate ¢é;(aq) is the worst, the individual a4 is kept in the population.

Optimization Method
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Results on Test Set

él,n én,'n é'u,'n é(p,n é2d,n é4d,n
Initial 2.86341 3.71362 3.2436 3.32135 5.11065  8.78238
Optimized 0.90609 0.94095 1.15279 1.18451 1.33594 2.64482

In the optimization, we use the test-train split as usual in machine learning. One
trajectory set is for optimization (the train set) and another one is for validation.
They consist of different trajectories.

The test set consists of 400 trajectories which are created independently in the
same way as the training ones (but without random variations of measurement
instants). In the Table, the criteria values on the test trajectories are shown. All
the criteria have lower values after optimization.




A Test jectory in Plane
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A Test Trajectory in Plane

This is a fragment of some trajectory in the plane. The true
simulated trajectory is magenta. The measurements are black.
The blue line corresponds to the initial parameters. The green
one s for the optimized parameters. You see that this line is
closer to the true trajectory, especially near the turns.




A Test Trajectory in Plane
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Graphs of the RMS deviation of X,; along some test trajectory
as a function of time.
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