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Trajectory Tracking

Our optimization object is the IMM (Interacting Multiple Model) algorithm of
trajectory tracking (the tracker). In trajectory tracking, the subjects are a moving
object and the trajectory of its motion. The trajectory can be curvylinear. The
measurements of the object position with random noise appear consequently at
discrete time instants.
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Trajectory Tracking

The measurements of the object position with random noise appear consequently
at discrete time instants.
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Trajectory Tracking

The IMM algorithm is a filtering procedure. Using measurements up to the
current time instant, it elaborates the esitmate of the position and the velocity.
Now, at the instance t1, there is a single measurement y1 and the estimate x̂(t1)
(blue circle with arrow) can use only this measurement.
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Trajectory Tracking

Now, there are two measurements y1 and y2.
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Trajectory Tracking

Now, there are two measurements y1 and y2. The estimate x̂(t2) uses both of
them.
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Trajectory Tracking
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Trajectory Tracking

And so on.
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Trajectory Tracking
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Trajectory Tracking
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Trajectory Tracking

The estimates (blue circles with arrows) differ from the true positions (magenta
dots) at the corresponding instants. These differences are subject of optimization.
The less the differences are, the better the tracking algorithm is.
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Trajectory Tracking

The estimates (blue circles with arrows) differ from the true positions (magenta
dots) at the corresponding instants. These differences are subject of optimization.
The less the differences are, the better the tracking algorithm is.
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Trajectory Tracking

Trajectories can be very different, a tracking algorithm has to handle all possible
trajectories. For example, it has to recognize the turn in this trajectory after the
rectilinear motion section. If not, the errors will be large. The IMM handles this
difficulty well.
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Trajectory Tracker by NITA

Our optimization object is the trajectory tracking program by
the NITA company

http://nita.ru/en/main

We collaborate with the NITA company and optimize their trajectory tracker. This
company is the leader in Russia in the Air Traffic Management (ATM) solutions.
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Planar Trajectories of Aircraft

This is a real aircraft trajectory from flightradar24. com .
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Planar Trajectories of Aircraft

This is a real aircraft trajectory from flightradar24. com .
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Planar Trajectories of Aircraft

A trajectory of aircraft is close to a sequence of straight line
and circular arc segments.

This is a simple, but sufficient model of the motion that we use.
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Planar Trajectories of Aircraft

Approximate planar dynamics:
ẋN = v cosϕ ,

ẋE = v sinϕ ,

ϕ̇ = u/v ,

v̇ = w .

xN , xE are the Cartesian coordinates in the plane;

v, ϕ are the aircraft speed and course;

u and w are the tangential and orthogonal accelerations,
(unknown controls!)

Typical motion types:

u(t) = 0, w(t) = 0 — constant velocity (CV);

u(t) = const, w(t) = 0 — coordinated turn (CT);

u(t) = 0, w(t) = const — constant acceleration (CA).
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Measurements

The measureable part of the state vector: the “geometrical”
part

xG =

[
xN
xE

]
.

The measurement vector

y =

[
yN
yE

]
=

[
xN
xE

]
+

[
wN
wE

]
= xG + η .

Measurements are made at discrete time instants

y(ti) = x(ti) + η(ti) , ti ∈ {t1, t2, t3, . . . , tn}

with random errors. For example,

η(ti) ∼ N (0, Hi).
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Measurements

This is a fragment of a real measurement track.
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Measurements

This is a fragment of a real measurement track.
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Filtering Problem

It is needed to make an estimate x̂(tn) (or x̂n) close to
x(tn;u(·), w(·)) using the history of measurements up to the
instant tn

Yn = {y(ti) : i = 1, . . . , n} .

The estimator x̂(tn) is a response to Yn:

x̂(tn) = x̂(tn;Yn) .

Performance criterion usually is

MSE {x̂(tn)} = E

{(
x̂(tn;Yn)− x(tn;u(·), w(·))

)2
}
.
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Filtering Problem
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The filtering problem for the trajectory tracking is classic. There are a lot of
publications about it.
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Interacting Multiple Model Algorithm

Today, the IMM, Interacting Multiple Model algorithm, is the state-of-the-art
solution for real-life problems with abruptly changing trajectories. Therefore, the
IMM is widely applied in ATM where the air traffic controller side has to be ready
for unscheduled sudden maneuvers of an aircraft.
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Interacting Multiple Model Algorithm

This is the scheme of IMM. Its core is the set of different models. Each model
corresponds to some motion regime.
The Transition Probabilities Matrix (TPM) determines the switches between
regimes (this is the parameter of the algorithm).

transition
probabilities

matrix
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Interacting Multiple Model Algorithm

This is the scheme of IMM. Its core is the set of different models. Each model
corresponds to some motion regime. Each model has its own dynamics and
elaborates the partial estimate x̂i of x at the last time instant (here, it is t3). The
final estimate is a mix of these partial ones. The jth dynamics include the system
noise νj with a covariance matrix Qj .

dynamics
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Interacting Multiple Model Algorithm

Each model has its own dynamics and elaborates the partial estimate x̂i of x at the
last time instant (here, it is t3). The final estimate is a mix of these partial ones.
The jth dynamics include the system noise νj with a covariance matrix Qj .

dynamics
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Black Box Concept

radar
measurements

algorithm parameters

Algorithm for aircraft tracking

position
estimate

Any trajectory tracking algorithm can be imagined as a black box: the radar
measurements are at input, the position estimates are at output. There are some
parameters influencing the algorithm behavior and the estimation quality. We
optimize the tracker parameters without using any specific features of the IMM
algorithm. We keep such a straightforward approach as we do not want to deviate
from the existent peculiarities and parameters of the NITA program since they are
grounded by practical demands of the real ATM system.
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Standards by EUROCONTROL

EUROCONTROL Specification for ATM Surveillance Sys-
tem Performance, Std.

https://www.eurocontrol.int/publication/

eurocontrol-specification-atm-surveillance-

system-performance-esassp

EUROCONTROL Standard for Radar Surveillance in En-
Route Airspace and Major Terminal Areas, Std.

https://www.eurocontrol.int/publication/

eurocontrol-standard-radar-surveillance-

en-route-airspace-and-major-terminal-areas

How do we assess the quality of estimation?
In ATC, there are many norms and specifications about the quality of estimation.
We follow Eurocontrol specifications in general.
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Standards by EUROCONTROL

This is the table of prescribed by the EUROCONTROL standard upper limits σb
of root mean squared error (RMSE) in the lateral and longitudinal channels in
dependence on the type of motion segment (acceleration free, turning, transition
between turning and acceleration free, etc.). Also, the upper limits on the
transitional duration time ∆t are given.
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Esimate—Truth Differences

True position

Estimated
position

In this picture, the true trajectory is the thick multicolor line line, and the estimated positions are
the black dots. The true trajectory is known during the simulations or, maybe, it can be measured
by more accurate sensor (in some cases, GPS can be such a sensor). In the standards (by
EUROCONTROL or in Russians standards too), it is conventional to project the difference
between the estimate x̂G and the true xG positions onto directions along el and across en the
trajectory, in other words, onto the longitudinal and lateral directions.
In the straight line motion segments (blue parts of the solid line), the upper RMSE limits are
strict. In the turns (green segment), the limits are relaxed. The transitional segments are red. The
durations of transitional processes are limited too.
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Esimate—Truth Differences

60

100 23 s 65 s

t

230

180

We can consider the upper RMSE limit σ̃ as a function of time t along the
trajectory. Then, we can compare the differences x̂G − xG and their root mean
squared error with it.
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Esimate—Truth Differences

True velocity

Estimated
velocity

Also, in the standards, there are upper RMSE limits on differences of the velocity
magnitude v
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Esimate—Truth Differences

True velocity

Estimated
velocity

Also, in the standards, there are upper RMSE limits on differences of the velocity
magnitude v

and the course ϕ.
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The Standards Criticism

There are some questions about the usage of the standards.

1 The accuracies of sensors are very different and differ from
the ones described in the standards. What do we do if the
sensor error is one half of the standard value? The rate of
measurement arrival also varies.

2 The aircraft have different maneuverability. This influences
the estimate error level and duration of the transitional
processes. What formulas can describe this dependence?

3 Transitions between some motion segments are not descri-
bed in the standards. Where can we get the limit values for
these transitions?
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Cramér–Rao Lower Bound as a Reference

An attempt to answer the questions above leads us to the
use of the Cramér–Rao lower bound (CRLB) instead of the
upper RMSE limits from the standards as the reference
accuracy.

The CRLB is the lower bound for the mean squared error
and the covariance matrix of the error (in a vector case) for the
unbiased estimates.

Real trajectory tracking algorithms usually produce biased
estimates. Nevertheless, the CRLB value describes well
potential accuracy of these algorithms.

The CRLB has an essential advantage: its value can be
evaluated explicitly using the true trajectory and characteristics
of the sensor system.
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Cramér–Rao Lower Bound as a Reference

E{x̂(tn;Yn)} ≡ x(tn; θ),

u(t) = u(t; θ), w(t) = w(t; θ).

J(tn; θ) =

n∑
i=1

∂x(ti; θ)

∂θ

T

(Hi)
−1∂x(ti; θ)

∂θ
.

E
{

(x̂(tn;Yn)− x(tn; θ)) (x̂(tn;Yn)− x(tn; θ))T
}
<

<

(
∂x(tn; θ)

∂θ

)
J(tn; θ)−1

(
∂x(tn; θ)

∂θ

)T

.

If the controls u and w are paramtrized by some parameters θ, then we can
calculate the partial derivatives of the true states x(ti) and the Fisher information
matrix J using the measurement noise covariances Hi. After matrix inversion,
we get the lower bound formula. Here, < denotes the partial order in symmetric
matrices in terms of positive semi-definiteness (Loewner order).
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Cramér–Rao Lower Bound as a Reference


ẋN = v cosϕ ,

ẋE = v sinϕ ,

ϕ̇ = u/v ,

v̇ = w .

θ =
[
θ0

T u0 w0 t1 u1 w1 t2 u2 w2 . . .
]T
.

For example, the parameters θ of the controls u and w can consist of the values ui
and wi of a piecewise-constant function of the time together with the switching
instants ti.
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IMM Method vs. CRLB
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For this simpe trajectory with one straight-line and one coordinated turn
segments . . .
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IMM Method vs. CRLB
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. . . we have this graph of the CRLB of the RMSE in the longitudinal channel.
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IMM Method vs. CRLB
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The accuracy of the real IMM algorithm is near CRLB, as you can see in this
graph. The ratio of these values is constant almost always.
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Performance Criteria

True position

Estimated
position

The tracking quality criteria can be formulated using the CRLB as follows. We
consider the relative longitudinal and lateral deviations and compare them with
the CRLB values “projected” onto the corresponding directions.
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Performance Criteria

xl(ti) = eTl (ti)(x̂(ti)− x(ti)),

Xl(ti) =
xl(ti)√

eTl (ti)J(ti)el(ti)
,

cl =
√
E
{
X2
l (t)

}
.

We consider the relative longitudinal and normal deviations Xl and Xn and
want to use the expectations of mean squared deviations. (Instead of them, the
empirical mean squared deviations are used in the algorithm.)
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Performance Criteria

xn(ti) = eTn(ti)(x̂(ti)− x(ti)),

Xn(ti) =
xn(ti)√

eTn(ti)J(ti)en(ti)
,

cn =
√
E {X2

n(t)}.

We consider the relative longitudinal and normal deviations Xl and Xn and
want to use the expectations of mean squared deviations. (Instead of them, the
empirical mean squared deviations are used in the algorithm.)
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Performance Criteria

True velocity

Estimated
velocity

Similarly, we consider the relative deviations of course and velocity magnitude.
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Performance Criteria

xv(ti) = eTv (ti)(x̂(ti)− x(ti)),

Xv(ti) =
xv(ti)√

eTv (ti)J(ti)ev(ti)
,

cv =
√

E {X2
v (t)}.

Similarly, we consider the relative deviations of course and velocity magnitude.
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Performance Criteria

xϕ(ti) = eTϕ(ti)(x̂(ti)− x(ti)),

Xϕ(ti) =
xϕ(ti)√

eTϕ(ti)J(ti)eϕ(ti)
,

cϕ =
√

E
{
X2
ϕ(t)

}
.

Similarly, we consider the relative deviations of course and velocity magnitude.

Optimization Object Optimization Problem Optimization Method Results 15



Performance Criteria

The Mahalanobis distance in the “geometric” coordinates is

X2d(ti) =
√

(x̂G(ti)− xG(ti))T(JG(ti))−1(x̂G(ti)− xG(ti)),

and the RMS deviation of the Mahalanobis distance in the total
state vector space is

X4d(ti) =
√

(x̂i − x(ti))T(J(ti))−1(x̂i − x(ti)),

c2d =
√
E
{
X2

2d(t)
}

c4d =
√

E
{
X2

4d(t)
}
.

Additionally, we formulate the complex criteria c2d and c4d. They measure the
relative deviations in many channels simultaneously.
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The Problem

{
(cl(a), cn(a), cv(a), cϕ(a), c2d(a), c4d(a))→ min,

amin ≤ a ≤ amax.

We have a multicriteria optimization problem with the parameter vector a. There
are 16 parameters of the IMM implementation by NITA; therefore, a ∈ R16. All
the parameters are subject of box constraints.
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Genetic Algorithm

We use a genetic optimization algorithm since the parameters of the NITA IMM
have complex and non-differentiable infulence on the performance metrics. The
operations of the genetic algorithm (the directed breeding, the crossover, and the
mutation) are quite usual. There is a population consisting of individuals. Every
individual is connected with some point a in the space R16 of parameters to be
optimized (of the trajectory tracker in our case).
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Multicriteria Optimization

Immortal

individuals

In this figure, the individuals are depicted in the criteria space (the criteria values
are assigned to each individual). Since we have many criteria, we can have many
minimum points. These individuals are marked as immortal.
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One Batch per Generation

We use a big dataset for optimization.
We want to calculate the estimates of the criteria for each individual using the
whole set, but it will be very expensive from the computational point of view.
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One Batch per Generation

Instead of that, at every generation of the evolution process, we calculate
the “preliminary” estimates on a small batch and then upgrade them at the

succeeding generations. In the figure, a batch is shown . . .
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One Batch per Generation

. . . and this is another batch.
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Estimates of the Criterion. Selection

The “true” criterion value cl is the expectation

cl =
√

E
{
X2
l (t)

}
.

We replace the expectation by its plug-in estimator

ĉ2
l,n =

1

n

n∑
i=1

X2
l,i , ĉl,n =

√
ĉ2
l,n.

N is the number of the trajectories xk(·),
Nk is the number of the measurements in xk(·),
n =

∑N
k=1Nk is the total number of the measurements.

ĉl,n
P−−−→

n→∞
cl , E {ĉl,n} = cl.

Optimization Object Optimization Problem Optimization Method Results 20



Estimates of the Criterion. Selection

We use the normal-based confidence interval

[ĉll,n, ĉ
u
l,n] =

[
ĉl,n − ŝen(ĉl,n)zα/2, ĉl,n + ŝen(ĉl,n)zα/2

]
,

where zα/2 is the (1− (1− α)/2)-quantile of N (0, 1), and

m̂
(4)
l,n =

1

n

n∑
i=1

X4
l,i , ŝen(ĉl,n) =

1

2ĉl,n
√
n

√
m̂

(4)
l,n − (ĉ2

l,n)2 .

We estimate the criteria using simulations. There are random errors in their
values.
For this reason, the lower and upper confidence bounds ĉl

i,n(a)
(a), ĉu

i,n(a)
(a) are

used in the selection procedure to prevent deletion of the individuals whose current
values of ĉi are slightly worse than others due to random influence.
Note that the number of samples n(a) in the estimates ĉi(a) and their bounds
ĉl
i,n(a)

(a), ĉu
i,n(a)

(a) depends on the individual a since the “lifetime” of the

individuals can differ.
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Estimates of the Criterion. Selection

The criterion estimates ĉi are depicted for three individuals a1, a2, and a3 with
the upper and lower bounds ĉli, ĉ

u
i of the confidence intervals.
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Estimates of the Criterion. Selection

During simulations, the estimates ĉi and the confidence intervals ĉli, ĉ
u
i are

changing. The width of an interval ĉui − ĉli shrinks whlie the center ĉi drifts.
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Estimates of the Criterion. Selection

The individual a3 is removed from the population if its lower confidence bound
ĉli(a3) is greater than the minimum of upper confidence bounds mina∈P ĉ

u
i (a).
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Estimates of the Criterion. Selection

A new individual a4 has the confidence interval [ĉl
i,n(a4)

(a4), ĉu
i,n(a4)

(a4)] that is wider

than the intervals of the “older” individuals since n(a4)� n(a1), n(a2). Despite the
estimate ĉi(a4) is the worst, the individual a4 is kept in the population.
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Results on Test Set

ĉl,n ĉn,n ĉv,n ĉϕ,n ĉ2d,n ĉ4d,n

Initial 2.86341 3.71362 3.2436 3.32135 5.11065 8.78238
Optimized 0.90609 0.94095 1.15279 1.18451 1.33594 2.64482

In the optimization, we use the test-train split as usual in machine learning. One
trajectory set is for optimization (the train set) and another one is for validation.
They consist of different trajectories.
The test set consists of 400 trajectories which are created independently in the
same way as the training ones (but without random variations of measurement
instants). In the Table, the criteria values on the test trajectories are shown. All
the criteria have lower values after optimization.
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A Test Trajectory in Plane
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A Test Trajectory in Plane

This is a fragment of some trajectory in the plane. The true
simulated trajectory is magenta. The measurements are black.
The blue line corresponds to the initial parameters. The green
one is for the optimized parameters. You see that this line is
closer to the true trajectory, especially near the turns.
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A Test Trajectory in Plane

Graphs of the RMS deviation of X4d along some test trajectory
as a function of time.
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A Test Trajectory in Plane

The absolute (in meters) RMS deviation of xn
in the lateral channel as a function of time.
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