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A model pursuit problem with incomplete information is considered. The case when the information sets [1-5] are intervals is
studied. The major part of the paper is devoted to proving the optimality of the proposed inverse connection strategies. Modelling
results are presented.

One of the versions of the study of control problems with incomplete information on the phase vector
is related to the change to the description of the state as a set of points in phase space compatible with
the information on the behaviour of the system collected up to a given instant of time. Such sets are
called information sets (IS). The problem can be stated as one of controlling the time variation of the
IS with the view to minimizing some index. Since the IS depends on the current reading, minimax
formulations arise naturally, in which the first player can exercise efficient control, while the other can
choose the readings. Many papers (see, for example, [1-5]) have been devoted to the formalization of
such problems. Optimal solutions for a number of problems of this type (in which the IS are intervals)
were obtained in [3, 6, 7].

1. DETAILED DESCRIPTION OF THE PROBLEM

Two material points, the pursuer P and the evading party E, move in a plane. The pursuer measures
the angular velocity of the line of sight at discrete instants of time #; and, applying impulse control at
these instants, attempts to reduce the magnitude of the miscalculation. Large miscalculation is regarded
as unsatisfactory (high-accuracy guidance). The impulses act orthogonally to a direction prescribed in
advance and constant in time. Let 6 be the magnitude of a single impulse and N the total number of
impulses. We denote by k(z;) the number of impulses of prescribed sign applied at a time ¢; (k(Z;) is either
a negative integer or a positive integer or zero), subject to the constraint X;|k(%;)| < N. The evading
party can alter its own velocity of motion by choosing the acceleration vector v with components v,
and v,, the control function v being subject to the condition |v| <.

The value of ®,,(#;) measured at the time #; and the true angular velocity o(z;) of the line of sight are
related by w,,(f;) = w(t;) + &(). Here §(;) is the reading error, about which it is known only that |E(z) |
< ¢, where ¢ = 0 is a given constant.

We shall assume that the nominal position £ of the evading party and its nominal velocity vector Ve
are specified at the initial time #,. We identify the origin of the difference system of coordinates with
the pursuer (Fig. 1). We take the x-axis to be in the opposite direction to the vector V' = Vg — Vp(to),
where Vp(ty) is the initial velocity vector of the pursuer. Suppose that the pursuer chooses Vp(1o) at £
so that the x-axis passes through £. We denote by z the axis perpendicular to x. The directions of the
axes are constant with respect to £. We assume that the impulses act along the z-axis (economical use
of resources in the course of conducting the pursuit). The initial position E(¢,) of the evading party and
the initial velocity vector Vg(t,) can differ from the preliminary prescribed values E and V. We assume,
however, that these differences are not too large. Let o(f) be the current sighting angle, let V) be the
component of the velocity difference along the x-axis, and let e be the length of V.

In the x, z-coordinates the dynamic equations have the form

)=, —GZ k(1;)8(t-1;), X(t)=v, (1.1)
Tlkapl<n,  lols<v
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The impulse interaction at time f; alters the velocity z by a jump of magnitude —ok(;).

2. THE DYNAMICS OF AN AUXILIARY DIFFERENTIAL GAME

Using the relationship z(¢) = x(¢)tg o), we rewrite the original system (1.1) in @, ®,x, V; coordinates.
We get

a(t) = w(t)
w(t)=-2V . ()o(r)/ x(t)-2tg a(r)w? (1) —sinou(t) cos o)V, / x(1)+
+cos? o),/ x(t)-(c cos? o)/ x(t))Z k(2)0(t—1;) (2.1)

x(0)=V, (1), V.(t)=v,

The system in terms of the equivalent coordinates proves convenient because the observed value ®
appears among the phase variables. Moreover, transition to various auxiliary problems differing by the
degree of simplification becomes possible. In the present paper we shall confine ourselves to the simplest
problem. We then use the resulting control algorithm in the original problem. A more complex auxiliary
problem is considered in [8]. However, no optimal strategies have been found in the more complex
case.

We assume that the variation of the velocity difference vector arising during the motion because of
the control exercised by the pursuer and the evading party is relative small (weak control). Because mis-
calculations which are not too large are of interest here, this assumption implies that o must be small
during a relatively long interval of motion starting from the initial time. Indeed, suppose that o is large
at some time #.. Since the cone on which the future motion can evolve is small and the axis of the cone
is close to being vertical, the miscalculation at the end will clearly be significant; the longer the time
between ¢. and the end the larger the miscalculation. We therefore assume a to be small. In the simplified
formulation of the auxiliary problem we substitute zero for sin o and tan o, and one for cos . Since
o is the observed value and o does not appear in the relationship for @ any more, the equation a(r)
= @(¢) can be discarded. We can therefore reduce the dimension of the phase vector by one.

Let us make additional simplifications. As a result of the weak control assumption, the miscalculation
for a specific motion can be approximated (taking into account that ¥ is directed along the x-axis) by
computing the modulus of the z coordinate at the time when x(¢f) = 0. It turns out that the variation of
the velocity along the z-axis has a more significant effect on the magnitude of the miscalculation than that
along the x-axis. It follows that, simplifying (2.1), we can assume V(f;) to be known precisely and equal to
V, = —e, and the control function v, can be assumed to be identically zero. The variation of the w, x
coordinates can be described by

w(t) =2en(t)/ x(t)+v,/ x(t)-(c/ x(t))z k(2)0(t—1,;)

x(t)=x(ty)—e(t—1y)
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Finally, we assume that x(t,) is specified precisely in the auxiliary problem. The behaviour of the system
in the x direction is then uniquely defined. Denoting the final instant by 9, we rewrite the relationship
for @(¢) in the form

@) =20()/ (O -1)+v, /e(O—1) = (0 / e(O-1)Y k(2,)8(t - 1;) (2.2)
The impulse interaction at #; causes ® to jump by —ok(t;)/e(d — t;). Moreover, X;|k(t;)| < N.
We shall adopt (2.2) as a description of the dynamics of the auxiliary differential game. Here is a list
of indeterminacies

o, @) =o0)+E1), 1) <c, v, I<v, o@)ea (2.3)

where A is an interval containing all values of the angular velocity at , possible because of the initial
indeterminacy of x, z, x, zin the difference system (1.1). The variation  is described by

(- 5)" F— J"(ﬁ—t)u (Ddt-———5 % k()0 -1)
O-02  e(®-1)7; ¢ e(O-? &in ’

(1) = o(f)
The maximum (minimum) value of the second component is attained for v, = v (v, = —v). We set

o 1 A _v(t=1) 1.
E —e(ﬁ-r 3 ’[(1‘) T)vdt= —e(ﬁ—t)2 (ﬂ 5 (t+t))

3. FORMALIZATION OF A DIFFERENTIAL GAME WITH
INCOMPLETE INFORMATION

We will now formulate an auxiliary differential game of two players, in which the state at time ¢; is
represented by a pair consisting of the information set of the w-axis and the remaining number of
impulses.

As the initial information set I_(;) we take an arbitrary interval on the w-axis. Consider the time ¢;
and the interval I_(t;),i = 0. Let H(t;) = {0:|® — ®,,(#;)| < ¢} be the indeterminacy set corresponding
to the reading ®,,(t;). We set I(t;) = I(¢;) N H(t;) and assume that this product is non-empty. At the
time ¢, after taking a reading, the first player, who chooses the impulses, can exercise his control. A
rigid translation by —ck(t;)/e(9 — t) will then carry the interval I(¢;) into I, (¢;).

We define I_(¢;4) to be the prediction of the position of (2.2) at ¢;,; given that I (z;) is the state at
time ¢; and no control is exercised by the first player during (¢;, #;+1]. Let ®. and @* be the left and right
ends of the intervals under consideration. The coordinate w._(¢;,) of the left end of I_(¢;,) is equal
to

ey 228
©u-ti11)= 00 () T 7 ~Llnti) )

The coordinate w*_(¢;+1) of the right end is defined by (3.1) with ., (¢;) replaced by ©* . (¢; ) and with
the sign of the last term altered.

Each of the sets I_(t;), I(t;), 1.(¢;) will be called an information set (prior to the reading, after the
reading, and after the impulses). We also call _(z;) the prediction set. A recurrent sequence of information
sets is thus defined. By the motion in the auxiliary game we mean the time variation of the information
set and the remaining impulse number. The first player can choose the controlling impulses, while the
other one can control the readings. We will take into account the effect of v, when constructing the
prediction set. When ¢ = 0 the game under consideration turns into one with complete information.
Then the measurement at time #; entails the choice of a point in I_(z;), which corresponds to the action
of some control function v,(¢) in the interval [¢;_; t,).

We denote by . the centre of the information interval, and by b its half-width. We have I = (a,, b)
and I. = (@.+, bs). Let ni(t;) = n(t;) - k(t;). If k(t;) = 0, then I.(t;) = I(t;) and n.(t;) = n(z;).

We take (t;, n, I) to be the position of the game for the first player, ¢; being the time, n the remaining
impulse number, and 7 the information set after the reading. A rule U: (¢;, n, I) — k which assigns the
number of impulses of given sign such that |k| < n to a position of the game will be called an admissible
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strategy of the first player. We call (z;, n, 1) the position of the game for the second player. Here I_ is
the information set before the reading (the prediction set). A rule Q: (t;, n, I.) — ®,, assigning a reading
®,, to the position will be called an admissible strategy of the second player. We require that I_ N H # &,
where H is the indeterminacy set constructed from ,,.

Specifying a pair U, Q of admissible strategies, a step A of the discrete observation and control scheme,
as well as the initial position (¢, n(t), I_(ts)), we can talk of the motion of the system in time. Let us
define the cost functional. For arbitrary o, ¢ (t < ¥) we set I[1(w, ) = |®|e(d —£)°, which is an approxi-
mation of the passive predicted miscalculation at m, ¢, i.e. the distance of the free motion of system
(2.2) from zero at the time when x = 0 (for an exact computation, one would need to prescribe, in
addition to o, ¢, an angle o |o|e(® —£)%(cos® ). Let [(w, ) = I(e, ¢) + V(¥ —t)*/2 be the maximum
predicted miscalculation.

We fix € = 0. We denote by z, the closest time ¢; to the left of ¥ — €. The number

D(19,n(ty), 1_(1y), U.Q,A,€)=max{[I(w,z,): wel,(t))

will be called the miscalculating corresponding to the initial position (¢, n(t), I_(fp)) and to U, Q, A,
and e.
The best guarantees for the players are defined by

| (1) l § = 'llf l.IIl vlilll Sl.lpq> t n t 5 l_ t ., U,Q,A,E
(to,n(to), _(to)) XU 1 1 ( 0 ( 0) ( 0) )

| (2) ( =S l.lll l.lll .Ilfq) to, N 1) I_ t 5 U,S).,A,E
(to,n(to), 1__(f0)) Up 1 1 1 ( 0 ( 0) ( 0) )

Let us introduce the strategy U, of the first player. We set

0 =[(Dc(’,‘)€(ﬁ—f;)} (32)

(o

Here the square brackets denote the integer part. We specify Uy as a function assigning to (¢;, n, I) the
number k° computed from (3.2) if |k°| < 7 and n sign k° if |k°| > n. Since o/e(® - ¢) is the variation
of (the modulus of) ® due to a single impulse, the computations using (3.2) can be regarded as equating
@, (taking the sign into account) with the threshold o/e(d — ¢) equal to the effectiveness of a single
impulse. Figure 2 illustrates this: it presents a possible variation of the information interval I under the
action of Uj. The directions of impulses are represented by horizontal arrows.

We shall introduce the strategy QO of the second player. Let @’ be the end-point of _(t;) at which
the maximum of [1(w, #;) for @ € I_(t;) is attained. The point w° coincides with the point of I_(#;) furthest
from zero. We define Q° as follows: if @’ is the right end of 1_(t;), then we set @, = ®° — c; if @’ is the
left end, then mz, = @ = ¢. This means that the reading is taken in such a way as to ensure that the
“worst” point @ from the prediction interval I (¢;) falls into I(¢;) and to obtain the maximum possible
length of I_(t;).The strategy QC is independent of n(t;) at the time ¢;.
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4. THE OPTIMALITY OF Uy AND Q,

The problem being studied is symmetric with respect to w. We therefore assume that the right end
of the information interval lies no closer to zero than the left one. If necessary, we replace the interval
by the symmetric one.

4.1. Standard motion

We shall determine the motion ¢ — (n(¢), 1(¢)), which will be called the standard motion (StM). It
represents the variation of the information interval and the remaining impulse number under continuous
observation (where A is negligibly small) and control according to the strategies U° and Q°. We assume
that the right end of the current indeterminacy set coincides with the right end of the information interval.
The component n(-) characterizes the impulse outlay. In the description of the StM we shall use the pre-
vious notation: ®, and ®* for the left and right ends, etc.

Assume that ©*(f) = 0 at some initial time / and 0*(f) = @*(f) — 2c. Let t > ©*(¢) be a piecewise
continuous function describing the variation of the right end of I and let t — ©,(f) be the analogous
function for the left end. Next, let the following conditions (1)—(3) be satisfied on the continuous pieces
of o*('):

1.0 ()=20"1)/ (O=1t)+V/e(®-1t),
2. o,(1)= 0" ()-2c,
3. if 0, (1)>0*(t)-2¢, then ®,(t)=2w0,()/(3—-1t)—Vv/e(d-1).

We adopt the following conditions (4)—(6) for the discontinuities of o*(-).

4.1ft = £ is the instant of discontinuity for @*(-), then the jump Aw*(t) = ©*.(f) — ©*(?) is equal to
—ok(t)/e(V - t) for some positive integer k(¢) < n(t), i.e. the discontinuity of @*(-) corresponds to k()
impulses to the left. The new value (the right-hand limit with respect to ¢) for the left edge is computed
from the formula 0, (f) = () + Aw*(?).

5. The discontinuities of w*(-) for ¢ > £ occur at times when the centre of the interval coincides with
the threshold o/e(d — ). The jump corresponds to a single impulse to the left.

6. When a jump occurs at f, then k() can be defined as the smallest positive integer k < n(f') such
that o, (f) = o.(f) — ok/e(d — ) < o/e(d - F). In other words, k(f) is the smallest k for which the new
centre @, (F) falls below the threshold o/e(d — 7). If k exceeds n(#), then we set k(f) = n(f).

Let us specify n(-):

7.t — n(?) is a piecewise constant function defined by n(f) = n(f) — Z;k(t), where t; = { are the
instants of discontinuity of w*(-).

The pair (n(-), I(-)) satisfying conditions (1)—(7) will be called the StM originating at (¥, n(¥), I(¥)).
With the StM we associate the value F(f, n, I) of a hypothetical miscalculation function, which we define
as the maximum predicted miscalculation computed for the StM at the time ¢; of the last impulse: F(f,

n, I) = ﬁ((D*+(tf), tf).

4.2. Auxiliary assertions

We shall state some properties of the motions of (2.2), the StM, and the hypothetical miscalculation
functions.t

1. Let ®V(-), ©®(-) be the solutions of the differential equation (2.2) in [f, ] originating from the
state m(l)(f )= u)(z)(f ), due to the control interactions v{V(-), &V(-) and 1)9)(') = v2(), kD(-). We make
the following assumptions: v{)(-) = 1),(2)(~); kW(z); takes positive integral values in a discrete set of times
ti,...,t;and vanishes at all other times; k?(r) = 0 fort € [f,¢) and K@ (¢') = £4_; kD(z,). Then 0 V(?)
< a)(z)(t’ ). This becomes an equality only whend =1,¢; = ¢.

2. Suppose that the inequality ,(¢") > @,(t") — 2c is satisfied for the StM at some instant ¢’ > #,. Then
,(t) > w*(t) - 2c for t € [ty, ¢'). Up to the time ¢’ the half-width b(f) evolves inside any interval without
impulses at the maximum possible rate described by b(t) = 2b(t)/(d —t) + v/e(d —1).

tFor a detailed presentation see: KUMKOV 8. I. and PATSKO V. A., A model pursuit problem with incomplete information.
Preprint, Inst. Matem. i Mekh. Ural’sk. Otd. Ross. Akad. Nauk, Ekaterinburg, 1993.
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3. Suppose that there are no impulses in (7, ') for a motxon according to a discrete scheme given an
arbltrary strategy U of the first player and the strategy Q° of the second playcr We assume that o, (t)

> @*(¢) — 2c. Then @,(t) > 0*(f) — 2c for t € (£, ¢’) and b(¢) evolves in (7, ') at the maximum possible
rate given by b(t) = 2b(t)/(9 —t) + V/e(d —1).

4. The hypothetical miscalculation function F is constant along the StM.

We assert the monoton1c1ty of the hypothetical miscalculation function in the following lemma. We
set F = F(r, nO0), 190t)),i = 1, 2.

Lemma 1. Let (t, "), IV(t)) and (1, n®(t), IP(t)) be two positions at time ¢ such that nV(¢) =
19, 0.00) = 0,2(t), bD(r) = bO(r). Then

F(2) < F(l) < F(z) +(m(l)"(t)_m(2)‘(t))e(ﬁ_t)Z (4.1)

The inequality F® < FY s also satisfied if nO(r) < n@(¢) and IV(t) D 1(2)(2).

The following two assertions are concerned with the values F(t, n(¢), I1(t)), F(t, n(t) — 1, 1.(¢)) of F
before and after a single impulse.

5. Let (¢, n(t), I(t)) be an arbitrary position and let a single impulse to the right be applied. Then F
does not decrease after the impulse.

6. Let (¢, n(t), I(t)) be a position such that ©,(¢) < o/e(d — ¢t) (the centre below the threshold) and
let a single impulse to the left be applied. Then F does not decrease after the impulse.

4.3. Saddle point
Let K = [w,, ®*] be an arbitrary interval. We denote by Y(K) the interval whose right end coincides
with o* and the left end is defined to be max {w,, w*— 2c}.

Lemma 2. The inequality
D(tg,n(ty), 1_(ty), U, Q% A€)= F(ty,n(ty), Y(I_(ty))) (42)

is satisfied for any initial position (¢, n(fy), I_(ty)), any strategy U of the first player, and any A and
€.

Proof. By the real motion (RM) we mean the motion according to the discrete scheme and strategies U and Q.
The symbols referring to the RM will be denoted by a bar. Those referring to the auxiliary StM will be denoted
by a tilde. The main idea is that F is non-decreasing along the RM. We specify the times 1, . . . , T,, when the
impulses act on the RM.

A. We shall study the variation of F along the RM in an interval from 1, to T,,;. Under the action of the impulses

I (%) becomes I ,(1,). Properties (4)-(6) imply that
F(t,.7, (1), I, (1)) =F(1,,7(1y), 1(15)), s=l..m (4.3)
We shall establish the inequality
F(o oA (Tr)e T(T00) = F(T A, (T5), To(T0), s=1om -1 (4.4)

We start at StM from (1, 7, (1), 14+(T;)) and continue up to the time T,,;. Let g = 0 bc the number of
1mpulses of the StM in [T, T54+1). With the position (tHl, A(Ter1), I (T341)) We assocnate (T4, 1 (tsﬂ) TY(t341)),
where 7 (1,,1) = 7' (ty41) + & = 74 (1,). The right end & *(tﬁl) of the interval I !(t,,,) is obtained by movmg the
unpulses at a)*(t”l) to the rlght by g,, and the half-width b' (T,+1) is equal to b(t,,;). We have F(te4q) 1 1(t541),
I'(t1)) = F(5ys1,7'(501), T (t41)) (briefly, F = F). i )

We shall prove the inequality F(Ty41), i(T41), T (Ty+1)) = F(Te41), ﬁlg‘cﬁl), T'(t,41)) (F = F). The argument
T5+1 Will be omitted for brevity. Since the second player uses the strategy O, the right end of the information interval
for the RM moves to the right at the maximum possible speed. By (1), we get ®'* < &*. If &, = @, then ' C T
and the required inequality F = F" follows from the second part of Lemma 1. Let &, < ®.. When b' < b, we invoke
the left inequality in (4.1). We assume that b < b'. Then b < c. On the basis of (3), we find that the half-width b(f)
evolves at the maxnmum possible speed in (7, T5+1). Therefore b=b = b'. This is a contradiction.

It follows that F = F', Since F! = F, we have F = F. By the equality F(T,41, 71(Ty41), I (Tg41)) = F(T,, 74 (1),
1.(z,)) the latter implies (4.4).

By analogy with (4.4), one can prove the following inequality in the case when t; > f; (i.e. when there is no
impulse at the initial instant #;)
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F(ry,7(1),1(1)))= F(ty,7(tg), I(19)) (4.5)

Here the StM originates from (¢, 7i(t), I (t))-
B. From (4.3)—(4.5), we get

F(pofiy (T)s L (T )= F(1,,7 (1)), I(T))= . =
= F(T,,1,0(Te1), 1(T)) = F(t,,7, (1), I, (1,)= F(tg,a(ty), I(1,)= ... =

= F(1,7(1), 1(1)))=F(tg,0(t), (1))

Because the strategy Q° is used, I(t;) = Y(I_(})) at any time t,. Therefore F(ty, fi(to), I(to)) = F(to, i(to), Y(I-(to))
and F(te, 0, 1,(te)) = F(ty, 0, I ,(1,)). Taking into account that F(t,, 0,1, (t,)) = F(Tp, iy (), T1+(Ty)), B(to,
A(to), I_(to), U, Q°, A, €) = F(t, 0,1,(te)), fto) = n(to) and I_(t5) = L(to), we arrive at (4.2).

Lemma 3. For any initial position (to, n(ty), I_(t)), any strategy Q of the second player, and any A
and ¢ the inequality

D(ty,n(te) 1_(1),U°, Q,A,€) <
< max{F(ty,n(ty), Y(I_(1,))) + KA, [r, + (e + A))(e+ A)} (4.6)

is satisfied, where the constants ry, r,, r; depend only on the parameters of the problem.

Proof. Here by the RM we mean the motion according to the discrete scheme and the strategies U° and Q. The
symbols referring to the RM will be denoted by a bar, and those referring to the auxiliary StM by a tilde. The main
idea is to estimate the growth of F along the RM. We specify the instants 1y, . . . , T,, when the impulses act on the
RM. Since the strategy U° is used, the impulses are applied at those times of the discrete scheme when the centre
of the RM lies either on or beyond the threshold.

A. We shall study the variation of F along the RM in the interval between 1, and 7,,;. It follows from (4) that

F(t,,7, (1), I.(t,)=F(t,,7(1,), I(1,)), s=1,..m 4.7)

We start the StM from (7, . (1), I+ (7,)) and continue it until (t,;). Let g, be the number of impulses for the
StM in [1;, T,4;). We shall establish the inequality

F(tg i (tgy), T(tey)) S F(1,,7, (%), I.(1,))+0gA, s=1,..,m-1 4.8)

We denote by ¢’ the closest time ¢’ # T, ; of the discrete scheme to the left of 1. ;. It is possible for ¢ to be equal
to T;.

We assume that /> T, In this case the centre of the RM lies below the threshold at the time . We estimate @*(¢")
by @*(¢'). If there are no impulses of the StM in [1;, ¢'), then B* (') < &*(?).

We shall show that when there are impulses

B ()<®"(r')+0/e(9-1) (4.9)

Let ¢" be the time of the last impulse of the StM up to . Then #’ > 1, the centre of the StM coincides with the
threshold at ", and b(t") = &*.(*").
When b(t") = c, we have

bt )Sc<cy(0.0” 1)) =&%(t" )y (9,1, 1)<&* (1)
YO, )= (O =1"")? 1 (D -1)?

Let b(t") < c. By (2), we conclude that b(r) evolves at the maximum possible speed in [t ¢”). Taking into
account that b(t,) = b,(T,) and t" > 1, we get b(¢") = b(¢") (even if #' is not an instant of the discrete scheme). We
have

b()<B" )Y, 1)+ {1t ) S @ (1) Y (.17 ) + 517 1)) = @° (1)

Inequality (4.9) follows from the relationships @*(') = ®.(t) + b(*) and ®,(¢') < o/e(d - t').

Let ' =1, Then ©* () = &*(¥').

We will now prove (4.8). We set b, = 0if ¢’ =1, or t’ > 1, but [1,, ') contains no impulses of the standard motion.
We assume that h; = 1ift’ > 1, and [1,, t') contains some impulses of the standard motion. Let ¢, = 0 be the number
of impulses of the standard motion in [, T, ). With the position (Ty4 1, 71(Ty41), I (T,41)) We associate (T, 1, 7 1(1,41),
T'(141)), where i'(t;41) = 7i(T;41) + b + @, the right end &'*(1,41) of T'(t,4,) is obtained by moving the impulses
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of &*(T41) to the right by i, + @, and the half-width b'(t,,) is equal to 5'(t,,1). We have F(Ty,1, ' (Ty41), T (%41))
=F (Ts+11 ﬁ(Ts+l): 11(13+1» (brieﬂy, Fl = F)’

We assume that ¢’ > T,. At the time ¢’ we start the motion of the system (2.2) from ®@*(¢’), with v,(f) = v and
k(t;) = 0. Let &(7,4,) be the position of the motion at the time (t4,). We have &*(T,+1) < ®(T,41). Let us equate
®*(T441) With @ *(,41). The following relations hold

~ — ~% ¥ h ’ ’
O(Ty4)) =@ (t')v(ﬂ,t’.rm)+C(t'.1s+.)s(m () +—s )v(ﬂ,t Vea) 8, Tehp)

e(9-1")
. . 9% o(9-t;)
s+) =0 V(O Ty ) +E(F . Topy) = L ————— 7
O (T541) (#)( ) +&( ) ng e(ﬁ—‘fsn)2
el oy o(hs +9,)
0 (T541)=0 (Ts+l)+e(13-'ts+l)

Heret; (j = 1,..., ¢,) are the times of the impulses of the StM in the interval from ¢’ to (%41). To each j there
corresponds one impulse. Furthermore

ohy
e(9-t’)
& o®-1j))  o(h+e) _ Oh(®-1) & O(0-1;)

j=1 e(ﬁ—‘t”,)2 e(ﬁ_ts+|) e(ﬂ-1s+|)2 j=1 e(ﬁ—T_H_] )2

_Oh+95) _ Olh+9,)(D-1)  Oh+9;) _ ol +9,)A

e(ﬁ_ts+l) - 8(6—1_‘._” )2 e(ﬁ—'tsﬂ) e(ﬁ_tsﬂ )2

&(I.H-l )_6‘)]*(1s+1 )S((B‘(t')+ )Y(ﬁ’t,"t.\'ﬂ)—(B‘(")Y(ﬂ’tl’tsﬂ )+

As a result

Olhs +9,)A (4.10)

— ~ %
O (T4 )SO (Tgyy) + (-1 )2
s+l

Let? = 1,. The estimate (4.10) also holds when A, = 0. In the above argument @*(¢") should be replaced by @3 (¢).
One must also take into account that there may be several impulses at £’ = .
Let us set F = F(Ty4q, #(Ts+1), [(Ty41))- We shall prove the inequality

F<F'+o(h+9,)A (4.11)

The argument T, will be omitted for brevity.

Let ®'* < ®*. We assume that b! < b. Then &. < ®,. This is indeed obvious when ' = b. Let b! < b. Ifb < c,
then half-width b(f) evolves at the maximum possible speed in [t,, T,+;) (property 2). Since b(t,) = by (1), it follows
that 5 > b. As a result, 5! = b > b. We have a contradiction. If 5 = ¢, then b = c. Since &'* < B*, we get &, =
®'* — ¢ < ®* - ¢ < ©,. The estimate (4.11) follows from Lemma 1, inequality (4.10), and the relationship 7' <
7i. We assume that 5! > b and set I' = (@, b'), ®. = @* - b', ' = i, F' = F(ty4,, ', I'), and F = F(t,,, 7', TY).
Applying Lemma 1, we obtain F! < F! when ®@. < &, and F* < F! + o(h, + j,)A when @, > @ Since ' 517, it
follows that F < F* < F! + o(h, + j,)A.

Let &* > ®*. We assume that b' < b. Then b = b* < c. It follows that b(f) evolves at the maximum possible
speed in [T, T,4,) (property 2). Since b(t;) = b, (), it follows that b = b™. As a result, ' = b~ > b™. We have a
contradiction. We assume that b! = b. By Lemma 1, we obtain F = F.

Therefore, F and F* are by (4.11). Since (h, + ¢;) < g, and F* = F, it follows from (4.11) that

F(to1n(Tes)s T(T ) S F(T501 iT1), 1(T501) 0858, s=1,.,m—1

Since F(Tes1, iTss1), I (Ts41)) = F(T, iy (%), I 4(Ts41)) the latter implies (4.8).
By analogy with (4.8), one can prove the following inequality for t; > ¢, (i.e. when there is no impulse at the
initial instant z;)

F(ty,7(t), 1())<F(tg,i(ty), 1(t9))+0goA (4.12)

where g is the number of impulses of the StM in [t,, T,) starting from the position (to, 7i(to), I(to))-
B. We consider the time 1,, < ¢, of the last impulse for the RM. First, we assume that 7..(1,,) = 0. This means
that all impulses have been spent. Using (4.7), (4.8), (4.12), and the relations g; < 7,.(1;) <N and m < N, we obtain

F(t,0,1, (1)) = F(T s 71 (T), T (0)) = F(Tp, (%), I(Tp))<
< F(ty,7(ty), I(t))+ON(N+1)A
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Since Q is an arbitrary strategy, we have F(t;, 7i(t;), I (t;)) < F(t, Al(t}), Y(I(t;))) at any time #; by Lemma 1. Therefore
F(to, 7ity), I (to)) < F(to, Ai(to), Y (to))) and F(te, 0,14(tc)) < F(Ty, 0, 1(t)- Since D(to, ilto), I(to), U°, 2, A, €)
= F(t, 0, 1..(t)), n(ty) = n(to) and I_(to) = I_(to), it follows that

D(ty,n(tg), 1_(ty), U®,Q,A,e)<F(tg,n(ty), Y(I_(tg)))+nrA (4.13)

where the constant r; depends only on the parameters of the problem.

We assume that 71, (1,,) = 0. Then the centre ™., (t;) of the RM lies below the threshold at .. It follows
that F(t,, 0,1 , (t;)) < [o/e(d —t;) + cle(d —t,)* + V(D — t)*/2. Using the inequality & — 1, < & + A, we get F(t,, 0,
I, (t)) <[o+ (ce + v/2)(c + A)](e + A). As a result

¢(t0an(t0), 1_(t0)7 UO,Q,A,E)S[rz+r3(£+A)](s+A) (4.14)

where the constants r, and r; depend only on the parameters of the problem.
By combining (4.13) and (4.14), we obtain (4.6).

Theorem. In the case when xo = x° the strategies U° and Q° are optimal. Moreover
TP (tg,n(tg), 1_(t9))=TP(tg,n(ty), I_(tg)) = Fltg,n(tg), Y(I_ (1))

Proof. Using (4.2) and (4.6), we get
LP(tg,n(to), 1(t5), Q°)=lim lim inf ®(tg,n(to), (1), U, Q°,A€)=>

= F(ty,n(ty), Y(I_(%)))

LV(ty,n(ty), I(ty), U%)=1im Tim sup ®(t,n(ty), I_(t,), U°,Q,Ae)<
e—>0 A0 Q

< F(ty,n(ty), Y(I_(15)))
It follows that
F(Z)(to,n(to)y I_(to)) > L(Z)(tO’n(tO)’ I_(to),QO) = F(tO!n(tO )v Y(I_(tO))) =

= [V(tg,nlty), L(1),U%)=TVt,nt), 1_(1)) (4.15)

On the other hand, we have T®(to, n(ty), I_(to)) < T\V(to, n(ty), I(o)) directly from the definition of
D, 1, All the terms in (4.15) are therefore equal.

5. RESULTS OF MODELLING

We denote by SM the control method in (1.1) corresponding to the strategy U°. We shall compare the SM method
with the FK control method using Kalman’s filtration of the angular velocity of the line of sight. The Kalman filter
was programmed for a model whose dynamics is described by (2.2), the observation and control are realized with
step A and the perturbations have a normal distribution with zero mean. The variances were given by the maximum
possible deviations determined by the geometrical constraints in (2.3). The following perturbations are taken into
account in the model: the dynamical miscalculation due to the acceleration v,, the variance being computed from
the formula (v/3)% the error in measuring the angular velocity, the variance being taken equal to (c/3); the initial
spread of the angular velocity, the variance of which is computed as the half-width of A. The relationships of the
recurrent step-by-step estimation are similar to those in [9]. Under the action of the filter, the angular velocity is
estimated at each step of the discrete scheme, the impulse control in (1.1) being developed using the threshold
o/x(t) as if this estimate where equal to the exact value.

The initial values x(¢;) and V,(t,) are assumed to be known by the pursuer and equal to 80,000 and —5000 m/s,
respectively. The indeterminacy of the initial horizontal position is |z| < 2000 m, and that of the horizontal
component of the initial velocity vector is |V,| < 100 m/s. The magnitude of a single impulse is 6 = 5 m/s and N
= 70 is the number of impulses. The acceleration of the evading party is v, = 0 vertically and |v,| <v = 2 m/s®
horizontally. The error in measuring the angular velocity of the line of sight is bounded by ¢ = 0.0009 rad/s. The
step is equal to A = 0.1 and the threshold € = 0.1. The initial information set I_(t;) = A is an interval with end
points _+(f5) = (~100 x 80,000 — 5000 x 2000)/80,000* and @_*(t) = (100 x 80,000 + 5000 x 2000)/80,000%. Since
the true value of the angular velocity is computed from the formula a(f) = (z()x(t) - x(t)z(2))/(*(t) + Z4(t)), I(to)
contains all values o that are possible because of the initial position and velocity indeterminacy.

Talking of the methods of forming the readings of w,,(#;) and the acceleration v,, we shall indicate two versions,
namely, RNN and GM.
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RNN. At each time ¢, the quantity ,,(%;) is obtained using a random number generator with a normal distribution
in the interval [w(t;) - ¢, ©(%;) + c], where @(;) is the true angular velocity of the line of sight. By analogy, the
acceleration v,(t;) is chosen from [-v, v] and kept constant within A.

GM. In this version ,, is produced in a similar way to the construction of Q" described in Section 3, but subject
to the condition that ®,,(¢;) must lie inside the interval [@(f;) — ¢, o(t;) + c]. We choose @, as follows: if o’ lies at
the right (left) end of the interval I_(t;), we define ®,,(£;) so that the right (left) end of H(w,,(#;)) lies as close as possible
to this point. We choose v, anew at each time ; and keep it constant in [t;, #;,). If the point o’ computed at £,
coincides with the right end of I_(t;,,), then we take v,(t;) = v. If it coincides with the left end, then v,(%;) = -v.

In Fig. 3 we present the ¢-dependence of the observed and true angular velocities @, and o realizing the impulse
control for the combinations SM—-RNN and SM-GM, given the initial coordinates x(t,) = 80,000, z(f;) = 100 m,
(o) = —5000 m/s, and 2(t;) = 20 m/s. The time is measured in seconds and the angular velocity in rad/s. The left
column corresponds to the combination SM~RNN, the right one to SM—GM. In the first case the miscalculation
amounts to 0.15 m, and 28 impulses are used. In the other case the values are 0.22 m and 58 impulses. Similar
graphs for the combinations FK-RNN and FK-GM and the same initial coordinates are shown in Fig. 4. A graph
for the output wy of the Kalman filter is added. The miscalculation for the FK-RNN combination amounts to
0.99 m, and for FK-GM it equals 51.35 m. Ten impulses were used in the former case and 70 in the latter. This
means that the noise in the game makes it necessary to apply a much larger number of impulses. In the case FK-GM
the entire supply of 70 impulses was used, resulting in a large miscalculation.
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