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corresponding observation equations. The results of work of the algorithm on simulated data
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1. PROBLEM OF MULTILATERATION

The problem of multilateration (MLAT) is as follows: at
some unknown time instant t the object (aircraft) under
observation, which is at location r, transmits a radio
signal. It can be a reply of the airborne transponder to the
secondary radar request or a signal of the ADS-B system.
This signal is received by several stations (there are m
stations) with known coordinates {ri}

m
i=1. The receiving

station i records the time of arrival (TOA) ti of this signal
with a random measurement error wi. We can write the
following observation equation (c is the speed of light):

{

ti = t+
1

c
�r − ri�+ wi,

i = 1, . . . ,m.
(1)

Multilateration algoritm have to produce an estimate of
the object position r̂ so that the estimation error would
be as less as possible. We assume the estimation error as
mean squared error (MSE) E

{

(r̂ − r)2
}

.

Note that in the literature (for example, I.A.Mantilla-
Gaviria et al. (2015)) the problem of multilateration is
often considered for the case when the measurements are
not times of arrival (TOA) {ti}

m
i=1, but the time differences

of arrival (TDOA) {ti − tj}i,j∈P for some pairs P of
receivers. However, taking into account the features of
architecture of the system, where a practical application is
possible, we are interested in the statement with the TOA
measurements. For this case, the mathematical statement
of the multilateration problem almost completely coincides
with the statement of the problem of localization in the
global positioning system (GPS). But there are differences.
So, in the case of GPS, the unknown variable is not the
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transmission time t, but the time bias between the receiver
clock and the satellite clock. Also, the accuracy of time
measurement in the receivers and the typical values of the
station coordinates ri are different. In multilateration, the
stations are usually located on the Earth surface, and the
observed object is usually an aircraft, which is also near
the surface (in comparison with the satellites in the case
of GPS). As a consequence, all the vectors r− ri are close
to the plane of the local horizon, which makes the task
difficult from the view point of numerical methods, and
even makes the solution impossible in some cases. The
estimation error along the vertical direction is especially
large.

Another feature of multilateration is bad detection of a
signal that often arises due to the shading of the prop-
agation path by obstacles on the Earth surface. If this
happens at some station (for example, i), there is no
corresponding measurement ti. If the number of stations
that received the signal is less than 4, it is impossible
to make the estimate using the remaining measurements.
These peculiarities led us to the idea of combining the
measurements obtained from several successive instants
of signal transmission and making a joint estimate. It
would be possible to use all the measurements available
from the beginning of the observation, and to perform
filtering using the model of the moving object (see Bar-
Shalom et al. (2004)). But such a solution does not look
universal; for different aircraft, it would be necessary to use
different filters with specific settings. The combination of
measurements into small batches and using the simplest
assumption of straight line and steady speed motion looks
as a more useful and straightforward approach. But this
easy method can already reduce the effect of lost measure-
ments and increase the accuracy of estimation.

17th IFAC Workshop on Control Applications of Optimization
Yekaterinburg, Russia, October 15-19, 2018

Copyright © 2018 IFAC 659

Localization with Several Instants of Signal

Transmission in Multilateration Systems ⋆

Dmitrii A. Bedin
∗

∗ Krasovskii Institute of Mathematics and Mechanics, UB RAS,
Ekaterinburg, Russia (e-mail: bedin@imm.uran.ru);

Ural Federal University named after the first President of Russia
B.N.Yeltsin, Ekaterinburg, Russia

Abstract: The problem of object localization in multilateration systems is considered in the
case when measurements (times of arrival, or TOA) of several consecutive signal transmissions
are processed together. The suggested solution of the problem is based on minimization of the
sum of residuals between TOA and their model. We proposed an effective numerical method
for this optimization task, which accuracy is close to the Cramer–Rao lower bound for the
corresponding observation equations. The results of work of the algorithm on simulated data
with real locations of the receiving stations are presented.

Keywords: Multilateration (MLAT), Nonlinear Least Squares, Cramer–Rao Lower Bound,
Levenberg–Marquardt Algorithm

1. PROBLEM OF MULTILATERATION

The problem of multilateration (MLAT) is as follows: at
some unknown time instant t the object (aircraft) under
observation, which is at location r, transmits a radio
signal. It can be a reply of the airborne transponder to the
secondary radar request or a signal of the ADS-B system.
This signal is received by several stations (there are m
stations) with known coordinates {ri}

m
i=1. The receiving

station i records the time of arrival (TOA) ti of this signal
with a random measurement error wi. We can write the
following observation equation (c is the speed of light):

{

ti = t+
1

c
�r − ri�+ wi,

i = 1, . . . ,m.
(1)

Multilateration algoritm have to produce an estimate of
the object position r̂ so that the estimation error would
be as less as possible. We assume the estimation error as
mean squared error (MSE) E

{

(r̂ − r)2
}

.

Note that in the literature (for example, I.A.Mantilla-
Gaviria et al. (2015)) the problem of multilateration is
often considered for the case when the measurements are
not times of arrival (TOA) {ti}

m
i=1, but the time differences

of arrival (TDOA) {ti − tj}i,j∈P for some pairs P of
receivers. However, taking into account the features of
architecture of the system, where a practical application is
possible, we are interested in the statement with the TOA
measurements. For this case, the mathematical statement
of the multilateration problem almost completely coincides
with the statement of the problem of localization in the
global positioning system (GPS). But there are differences.
So, in the case of GPS, the unknown variable is not the

⋆ This research was supported by the Presidium of the Russian

Academy of Sciences, Program no. 30 “Theory and Technologies of

Multi-level Decentralized Group Control under Confrontation and

Cooperation”.

transmission time t, but the time bias between the receiver
clock and the satellite clock. Also, the accuracy of time
measurement in the receivers and the typical values of the
station coordinates ri are different. In multilateration, the
stations are usually located on the Earth surface, and the
observed object is usually an aircraft, which is also near
the surface (in comparison with the satellites in the case
of GPS). As a consequence, all the vectors r− ri are close
to the plane of the local horizon, which makes the task
difficult from the view point of numerical methods, and
even makes the solution impossible in some cases. The
estimation error along the vertical direction is especially
large.

Another feature of multilateration is bad detection of a
signal that often arises due to the shading of the prop-
agation path by obstacles on the Earth surface. If this
happens at some station (for example, i), there is no
corresponding measurement ti. If the number of stations
that received the signal is less than 4, it is impossible
to make the estimate using the remaining measurements.
These peculiarities led us to the idea of combining the
measurements obtained from several successive instants
of signal transmission and making a joint estimate. It
would be possible to use all the measurements available
from the beginning of the observation, and to perform
filtering using the model of the moving object (see Bar-
Shalom et al. (2004)). But such a solution does not look
universal; for different aircraft, it would be necessary to use
different filters with specific settings. The combination of
measurements into small batches and using the simplest
assumption of straight line and steady speed motion looks
as a more useful and straightforward approach. But this
easy method can already reduce the effect of lost measure-
ments and increase the accuracy of estimation.

17th IFAC Workshop on Control Applications of Optimization
Yekaterinburg, Russia, October 15-19, 2018

Copyright © 2018 IFAC 659

Localization with Several Instants of Signal

Transmission in Multilateration Systems ⋆

Dmitrii A. Bedin
∗

∗ Krasovskii Institute of Mathematics and Mechanics, UB RAS,
Ekaterinburg, Russia (e-mail: bedin@imm.uran.ru);

Ural Federal University named after the first President of Russia
B.N.Yeltsin, Ekaterinburg, Russia

Abstract: The problem of object localization in multilateration systems is considered in the
case when measurements (times of arrival, or TOA) of several consecutive signal transmissions
are processed together. The suggested solution of the problem is based on minimization of the
sum of residuals between TOA and their model. We proposed an effective numerical method
for this optimization task, which accuracy is close to the Cramer–Rao lower bound for the
corresponding observation equations. The results of work of the algorithm on simulated data
with real locations of the receiving stations are presented.

Keywords: Multilateration (MLAT), Nonlinear Least Squares, Cramer–Rao Lower Bound,
Levenberg–Marquardt Algorithm

1. PROBLEM OF MULTILATERATION

The problem of multilateration (MLAT) is as follows: at
some unknown time instant t the object (aircraft) under
observation, which is at location r, transmits a radio
signal. It can be a reply of the airborne transponder to the
secondary radar request or a signal of the ADS-B system.
This signal is received by several stations (there are m
stations) with known coordinates {ri}

m
i=1. The receiving

station i records the time of arrival (TOA) ti of this signal
with a random measurement error wi. We can write the
following observation equation (c is the speed of light):

{

ti = t+
1

c
�r − ri�+ wi,

i = 1, . . . ,m.
(1)

Multilateration algoritm have to produce an estimate of
the object position r̂ so that the estimation error would
be as less as possible. We assume the estimation error as
mean squared error (MSE) E

{

(r̂ − r)2
}

.

Note that in the literature (for example, I.A.Mantilla-
Gaviria et al. (2015)) the problem of multilateration is
often considered for the case when the measurements are
not times of arrival (TOA) {ti}

m
i=1, but the time differences

of arrival (TDOA) {ti − tj}i,j∈P for some pairs P of
receivers. However, taking into account the features of
architecture of the system, where a practical application is
possible, we are interested in the statement with the TOA
measurements. For this case, the mathematical statement
of the multilateration problem almost completely coincides
with the statement of the problem of localization in the
global positioning system (GPS). But there are differences.
So, in the case of GPS, the unknown variable is not the

⋆ This research was supported by the Presidium of the Russian

Academy of Sciences, Program no. 30 “Theory and Technologies of

Multi-level Decentralized Group Control under Confrontation and

Cooperation”.

transmission time t, but the time bias between the receiver
clock and the satellite clock. Also, the accuracy of time
measurement in the receivers and the typical values of the
station coordinates ri are different. In multilateration, the
stations are usually located on the Earth surface, and the
observed object is usually an aircraft, which is also near
the surface (in comparison with the satellites in the case
of GPS). As a consequence, all the vectors r− ri are close
to the plane of the local horizon, which makes the task
difficult from the view point of numerical methods, and
even makes the solution impossible in some cases. The
estimation error along the vertical direction is especially
large.

Another feature of multilateration is bad detection of a
signal that often arises due to the shading of the prop-
agation path by obstacles on the Earth surface. If this
happens at some station (for example, i), there is no
corresponding measurement ti. If the number of stations
that received the signal is less than 4, it is impossible
to make the estimate using the remaining measurements.
These peculiarities led us to the idea of combining the
measurements obtained from several successive instants
of signal transmission and making a joint estimate. It
would be possible to use all the measurements available
from the beginning of the observation, and to perform
filtering using the model of the moving object (see Bar-
Shalom et al. (2004)). But such a solution does not look
universal; for different aircraft, it would be necessary to use
different filters with specific settings. The combination of
measurements into small batches and using the simplest
assumption of straight line and steady speed motion looks
as a more useful and straightforward approach. But this
easy method can already reduce the effect of lost measure-
ments and increase the accuracy of estimation.

17th IFAC Workshop on Control Applications of Optimization
Yekaterinburg, Russia, October 15-19, 2018

Copyright © 2018 IFAC 659

Localization with Several Instants of Signal

Transmission in Multilateration Systems ⋆

Dmitrii A. Bedin
∗

∗ Krasovskii Institute of Mathematics and Mechanics, UB RAS,
Ekaterinburg, Russia (e-mail: bedin@imm.uran.ru);

Ural Federal University named after the first President of Russia
B.N.Yeltsin, Ekaterinburg, Russia

Abstract: The problem of object localization in multilateration systems is considered in the
case when measurements (times of arrival, or TOA) of several consecutive signal transmissions
are processed together. The suggested solution of the problem is based on minimization of the
sum of residuals between TOA and their model. We proposed an effective numerical method
for this optimization task, which accuracy is close to the Cramer–Rao lower bound for the
corresponding observation equations. The results of work of the algorithm on simulated data
with real locations of the receiving stations are presented.

Keywords: Multilateration (MLAT), Nonlinear Least Squares, Cramer–Rao Lower Bound,
Levenberg–Marquardt Algorithm

1. PROBLEM OF MULTILATERATION

The problem of multilateration (MLAT) is as follows: at
some unknown time instant t the object (aircraft) under
observation, which is at location r, transmits a radio
signal. It can be a reply of the airborne transponder to the
secondary radar request or a signal of the ADS-B system.
This signal is received by several stations (there are m
stations) with known coordinates {ri}

m
i=1. The receiving

station i records the time of arrival (TOA) ti of this signal
with a random measurement error wi. We can write the
following observation equation (c is the speed of light):

{

ti = t+
1

c
�r − ri�+ wi,

i = 1, . . . ,m.
(1)

Multilateration algoritm have to produce an estimate of
the object position r̂ so that the estimation error would
be as less as possible. We assume the estimation error as
mean squared error (MSE) E

{

(r̂ − r)2
}

.

Note that in the literature (for example, I.A.Mantilla-
Gaviria et al. (2015)) the problem of multilateration is
often considered for the case when the measurements are
not times of arrival (TOA) {ti}

m
i=1, but the time differences

of arrival (TDOA) {ti − tj}i,j∈P for some pairs P of
receivers. However, taking into account the features of
architecture of the system, where a practical application is
possible, we are interested in the statement with the TOA
measurements. For this case, the mathematical statement
of the multilateration problem almost completely coincides
with the statement of the problem of localization in the
global positioning system (GPS). But there are differences.
So, in the case of GPS, the unknown variable is not the

⋆ This research was supported by the Presidium of the Russian

Academy of Sciences, Program no. 30 “Theory and Technologies of

Multi-level Decentralized Group Control under Confrontation and

Cooperation”.

transmission time t, but the time bias between the receiver
clock and the satellite clock. Also, the accuracy of time
measurement in the receivers and the typical values of the
station coordinates ri are different. In multilateration, the
stations are usually located on the Earth surface, and the
observed object is usually an aircraft, which is also near
the surface (in comparison with the satellites in the case
of GPS). As a consequence, all the vectors r− ri are close
to the plane of the local horizon, which makes the task
difficult from the view point of numerical methods, and
even makes the solution impossible in some cases. The
estimation error along the vertical direction is especially
large.

Another feature of multilateration is bad detection of a
signal that often arises due to the shading of the prop-
agation path by obstacles on the Earth surface. If this
happens at some station (for example, i), there is no
corresponding measurement ti. If the number of stations
that received the signal is less than 4, it is impossible
to make the estimate using the remaining measurements.
These peculiarities led us to the idea of combining the
measurements obtained from several successive instants
of signal transmission and making a joint estimate. It
would be possible to use all the measurements available
from the beginning of the observation, and to perform
filtering using the model of the moving object (see Bar-
Shalom et al. (2004)). But such a solution does not look
universal; for different aircraft, it would be necessary to use
different filters with specific settings. The combination of
measurements into small batches and using the simplest
assumption of straight line and steady speed motion looks
as a more useful and straightforward approach. But this
easy method can already reduce the effect of lost measure-
ments and increase the accuracy of estimation.

17th IFAC Workshop on Control Applications of Optimization
Yekaterinburg, Russia, October 15-19, 2018

Copyright © 2018 IFAC 659

Localization with Several Instants of Signal

Transmission in Multilateration Systems ⋆

Dmitrii A. Bedin
∗

∗ Krasovskii Institute of Mathematics and Mechanics, UB RAS,
Ekaterinburg, Russia (e-mail: bedin@imm.uran.ru);

Ural Federal University named after the first President of Russia
B.N.Yeltsin, Ekaterinburg, Russia

Abstract: The problem of object localization in multilateration systems is considered in the
case when measurements (times of arrival, or TOA) of several consecutive signal transmissions
are processed together. The suggested solution of the problem is based on minimization of the
sum of residuals between TOA and their model. We proposed an effective numerical method
for this optimization task, which accuracy is close to the Cramer–Rao lower bound for the
corresponding observation equations. The results of work of the algorithm on simulated data
with real locations of the receiving stations are presented.

Keywords: Multilateration (MLAT), Nonlinear Least Squares, Cramer–Rao Lower Bound,
Levenberg–Marquardt Algorithm

1. PROBLEM OF MULTILATERATION

The problem of multilateration (MLAT) is as follows: at
some unknown time instant t the object (aircraft) under
observation, which is at location r, transmits a radio
signal. It can be a reply of the airborne transponder to the
secondary radar request or a signal of the ADS-B system.
This signal is received by several stations (there are m
stations) with known coordinates {ri}

m
i=1. The receiving

station i records the time of arrival (TOA) ti of this signal
with a random measurement error wi. We can write the
following observation equation (c is the speed of light):

{

ti = t+
1

c
�r − ri�+ wi,

i = 1, . . . ,m.
(1)

Multilateration algoritm have to produce an estimate of
the object position r̂ so that the estimation error would
be as less as possible. We assume the estimation error as
mean squared error (MSE) E

{

(r̂ − r)2
}

.

Note that in the literature (for example, I.A.Mantilla-
Gaviria et al. (2015)) the problem of multilateration is
often considered for the case when the measurements are
not times of arrival (TOA) {ti}

m
i=1, but the time differences

of arrival (TDOA) {ti − tj}i,j∈P for some pairs P of
receivers. However, taking into account the features of
architecture of the system, where a practical application is
possible, we are interested in the statement with the TOA
measurements. For this case, the mathematical statement
of the multilateration problem almost completely coincides
with the statement of the problem of localization in the
global positioning system (GPS). But there are differences.
So, in the case of GPS, the unknown variable is not the

⋆ This research was supported by the Presidium of the Russian

Academy of Sciences, Program no. 30 “Theory and Technologies of

Multi-level Decentralized Group Control under Confrontation and

Cooperation”.

transmission time t, but the time bias between the receiver
clock and the satellite clock. Also, the accuracy of time
measurement in the receivers and the typical values of the
station coordinates ri are different. In multilateration, the
stations are usually located on the Earth surface, and the
observed object is usually an aircraft, which is also near
the surface (in comparison with the satellites in the case
of GPS). As a consequence, all the vectors r− ri are close
to the plane of the local horizon, which makes the task
difficult from the view point of numerical methods, and
even makes the solution impossible in some cases. The
estimation error along the vertical direction is especially
large.

Another feature of multilateration is bad detection of a
signal that often arises due to the shading of the prop-
agation path by obstacles on the Earth surface. If this
happens at some station (for example, i), there is no
corresponding measurement ti. If the number of stations
that received the signal is less than 4, it is impossible
to make the estimate using the remaining measurements.
These peculiarities led us to the idea of combining the
measurements obtained from several successive instants
of signal transmission and making a joint estimate. It
would be possible to use all the measurements available
from the beginning of the observation, and to perform
filtering using the model of the moving object (see Bar-
Shalom et al. (2004)). But such a solution does not look
universal; for different aircraft, it would be necessary to use
different filters with specific settings. The combination of
measurements into small batches and using the simplest
assumption of straight line and steady speed motion looks
as a more useful and straightforward approach. But this
easy method can already reduce the effect of lost measure-
ments and increase the accuracy of estimation.

17th IFAC Workshop on Control Applications of Optimization
Yekaterinburg, Russia, October 15-19, 2018

Copyright © 2018 IFAC 659

Localization with Several Instants of Signal

Transmission in Multilateration Systems ⋆

Dmitrii A. Bedin
∗

∗ Krasovskii Institute of Mathematics and Mechanics, UB RAS,
Ekaterinburg, Russia (e-mail: bedin@imm.uran.ru);

Ural Federal University named after the first President of Russia
B.N.Yeltsin, Ekaterinburg, Russia

Abstract: The problem of object localization in multilateration systems is considered in the
case when measurements (times of arrival, or TOA) of several consecutive signal transmissions
are processed together. The suggested solution of the problem is based on minimization of the
sum of residuals between TOA and their model. We proposed an effective numerical method
for this optimization task, which accuracy is close to the Cramer–Rao lower bound for the
corresponding observation equations. The results of work of the algorithm on simulated data
with real locations of the receiving stations are presented.

Keywords: Multilateration (MLAT), Nonlinear Least Squares, Cramer–Rao Lower Bound,
Levenberg–Marquardt Algorithm

1. PROBLEM OF MULTILATERATION

The problem of multilateration (MLAT) is as follows: at
some unknown time instant t the object (aircraft) under
observation, which is at location r, transmits a radio
signal. It can be a reply of the airborne transponder to the
secondary radar request or a signal of the ADS-B system.
This signal is received by several stations (there are m
stations) with known coordinates {ri}

m
i=1. The receiving

station i records the time of arrival (TOA) ti of this signal
with a random measurement error wi. We can write the
following observation equation (c is the speed of light):

{

ti = t+
1

c
�r − ri�+ wi,

i = 1, . . . ,m.
(1)

Multilateration algoritm have to produce an estimate of
the object position r̂ so that the estimation error would
be as less as possible. We assume the estimation error as
mean squared error (MSE) E

{

(r̂ − r)2
}

.

Note that in the literature (for example, I.A.Mantilla-
Gaviria et al. (2015)) the problem of multilateration is
often considered for the case when the measurements are
not times of arrival (TOA) {ti}

m
i=1, but the time differences

of arrival (TDOA) {ti − tj}i,j∈P for some pairs P of
receivers. However, taking into account the features of
architecture of the system, where a practical application is
possible, we are interested in the statement with the TOA
measurements. For this case, the mathematical statement
of the multilateration problem almost completely coincides
with the statement of the problem of localization in the
global positioning system (GPS). But there are differences.
So, in the case of GPS, the unknown variable is not the

⋆ This research was supported by the Presidium of the Russian

Academy of Sciences, Program no. 30 “Theory and Technologies of

Multi-level Decentralized Group Control under Confrontation and

Cooperation”.

transmission time t, but the time bias between the receiver
clock and the satellite clock. Also, the accuracy of time
measurement in the receivers and the typical values of the
station coordinates ri are different. In multilateration, the
stations are usually located on the Earth surface, and the
observed object is usually an aircraft, which is also near
the surface (in comparison with the satellites in the case
of GPS). As a consequence, all the vectors r− ri are close
to the plane of the local horizon, which makes the task
difficult from the view point of numerical methods, and
even makes the solution impossible in some cases. The
estimation error along the vertical direction is especially
large.

Another feature of multilateration is bad detection of a
signal that often arises due to the shading of the prop-
agation path by obstacles on the Earth surface. If this
happens at some station (for example, i), there is no
corresponding measurement ti. If the number of stations
that received the signal is less than 4, it is impossible
to make the estimate using the remaining measurements.
These peculiarities led us to the idea of combining the
measurements obtained from several successive instants
of signal transmission and making a joint estimate. It
would be possible to use all the measurements available
from the beginning of the observation, and to perform
filtering using the model of the moving object (see Bar-
Shalom et al. (2004)). But such a solution does not look
universal; for different aircraft, it would be necessary to use
different filters with specific settings. The combination of
measurements into small batches and using the simplest
assumption of straight line and steady speed motion looks
as a more useful and straightforward approach. But this
easy method can already reduce the effect of lost measure-
ments and increase the accuracy of estimation.

17th IFAC Workshop on Control Applications of Optimization
Yekaterinburg, Russia, October 15-19, 2018

Copyright © 2018 IFAC 659



660 Dmitrii A. Bedin  / IFAC PapersOnLine 51-32 (2018) 659–662

2. MODEL OF OBSERVATIONS. CRAMER–RAO
LOWER BOUND

The observation model for the problem with several signal
transmission instants is based on equations (1). Let us
denote by t the time of last transmission and accept that
it is the time for which it is necessary to provide the
estimate r̂. Assume that the instants of signal transmission
are tj = t+∆j, the number of them is n. As t corresponds
to the last transmission, following equations are fulfilled:
t = tn, ∆n = 0. The measurement instants and their
random errors are denoted by tji and w̃j

i , respectively. We

assume that the random errors w̃j
i are independent and

identically distributed for all i, j, and have zero mean:

E

�

w̃j
i

�

= 0. The following equations are fulfilled

�

tji = t+∆j +
1

c
�r + v∆j − ri�+ w̃j

i ,

i ∈ Ij , j = 1, . . . , n.
(2)

Here, Ij is the set of indices of the stations that have
received the signal at the time tj (they can be not all
stations, and at each time the set can change); r and v are
the position and velocity of the object at the instant t.

For simplicity, it is useful to multiply equations (2) to c.

Let us denote τ ji = ctji , τ = ct, δj = c∆j , and wj
i = cw̃j

i ,
then equation (2) is modified as follows

�

τ ji = τ + δj + �r + v∆j − ri�+ wj
i ,

i ∈ Ij , j = 1, . . . , n.
(3)

In the observation model (3), there are 7+ n independent
variables: r, v ∈ R

3, τ, δ1, . . . , δn ∈ R. Equality δn = 0
removes only one of them, so total number of the variables
is significantly large. Often, in practice, the differences
{δj}nj=1 of transmission instants can be easily recovered.

Let us consider the case of known the differences δj (and
∆j). For sake of brevity, we denote the vector of the

parameters as a θ =
�

rT vT τ
�T

.

For the observation model (3), it is possible to construct
the Cramer–Rao lower bound of accuracy (see Chernyak
(2008)), which shows potentially achievable accuracy of
unbiased estimators. Let us introduce unit vectors of the
direction from the location ri of the station i to the object
location r (the position of the object at the instant t)

eji (θ) =
r + v∆j − ri
�r + v∆j − ri�

.

Below, we refer this quantity as eji without the symbol θ

in brackets. The probability density function ρt(τ
j
i ) of the

measurements τ ji is expressed through the density ρw(·) of

the random variable wj
i (it is the same for all i, j because

the errors wj
i are independent and identically distributed)

ρt(τ
j
i |θ) = ρw

�

f j
i (τ

j
i ; θ)

�

= ρw

�

τ ji − gji (θ)
�

where f j
i are residual functions

f j
i (τ

j
i ; θ) = τ ji − τ − δj − �r + v∆j − ri� (4)

between the observations τ ji and their models

gji (θ) = τ +∆j + �r + v∆j − ri� .

The gradient of residual function (we suppose that gradi-
ents are columns) have the form

∇f j
i (τ

j
i ; θ) = −∇gji (θ)

= −









∂

∂r
�r + v∆j − ri�

∂

∂v
�r + v∆j − ri�

1









= −





eji
∆jeji
1



 (5)

and does not depend on τ ji . Using equalities

∂

∂r
eji =

1

�r + v∆j − ri�

�

I − ejie
j
i

T
�

,
∂

∂v
eji = ∆j ∂

∂r
eji ,

we can write the hessian of f j
i too

∇2f j
i (τ

j
i ; θ) = −∇2gji (θ)

= −
1

�r + v∆j − ri�





Ej
i ∆jEj

i 0

∆jEj
i (∆j)2Ej

i 0
0 0 0



. (6)

Here, we denote the projection matrix
�

I − ejie
j
i

T
�

as Ej
i .

Let us to calculate the Fisher information matrix

I(θ) =

n
�

j=1

�

i∈Ij

E

�

�

∂

∂θ
ln ρt(τ

j
i |θ)

��

∂

∂θ
ln ρt(τ

j
i |θ)

�T
�

=

n
�

j=1

�

i∈Ij

�

�

−
ρ̇w(τ

j
i − gji (θ))

ρw(τ
j
i − gji (θ))

∇gji (θ)

�

×

�

−
ρ̇w(τ

j
i − gji (θ))

ρw(τ
j
i − gji (θ))

∇gji (θ)

�T

ρw(τ
j
i − gji (θ)) dτ

j
i

= κ

n
�

j=1

�

i∈Ij







ejie
j
i

T

∆jejie
j
i

T

eji
∆jejie

j
i

T

(∆j)2ejie
j
i

T

∆jeji
eji

T

∆jeji
T

1







=: κD(θ)−1 . (7)

Here

κ =

�

�

ρ̇w(w)
2/ρw(w)

�

dw

is a constant depending on the properties of the random
measurement errors wj

i only, and the matrix D(θ) ex-
presses the geometric properties of the observation prob-
lem and has name the Dilution of Precision (DOP) matrix.
The Cramer–Rao inequality (see Borovkov (1984))

E

�

�

θ̂ − θ
��

θ̂ − θ
�T

�

≥ I(θ)−1 = κ−1D(θ) (8)

stadns that the accuracy of an estimate θ̂ of θ cannot be
better than κ−1D(θ) in the case of unbiased estimates
(see Borovkov (1984)). The inequality in (8) should be
considered in the sense of positive semidefiniteness of the
matrices difference. The estimation accuracy of a part
of the vector θ (for example, r, which is important in
our case) is connected with the corresponding part of the
matrix I(θ)−1.

Given the characteristics of the multilateration system
(location of the receiving stations {ri}

m
i=1, characteristics

of the errors wj
i ), it is possible to build the accuracy

boundary at each position in the observation zone us-
ing formula (8). The vectors eji are almost identical for
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Fig. 1. Fig. 1. Levels for the Cramer–Rao lower bound of
accuracy (in meters) of estimation for the horizontal
coordinates of the aircraft for the specific location of
the receiving stations (marked with asterisks).

different j in some reasonable range of v and ∆j . As a
consequence, the dependence of matrix (7) on v is very
weak and it can be neglected in calculations.

Figure 1 shows the levels of the accuracy lower bound
(according to equation (8)) for the horizontal coordinates.
They are calculated for specific locations of the receiving
stations on the ground (shown by asterisks) and the nor-

mally distributed errors wj
i with zero mean and standard

deviation of 1 µs; the aircraft altitude is 2000 m.

3. NONLINEAR LEAST SQUARES ESTIMATE.
MINIMIZATION OF THE FUNCTIONAL

The solution of the multilateration problem and the de-
velopment of estimates of r can be made in different ways,
but apparently the most promising is maximum likelihood
estimates (see I.A.Mantilla-Gaviria et al. (2015)). In the
particular case of normally distributed observation errors
wj

i , such an estimate corresponds to the minimization of
mean square of residuals (4)

J(θ) =
1

N

n
�

j=1

�

i∈Ij

�

f j
i (τ

j
i ; θ)

�2

=
1

N

n
�

j=1

�

i∈Ij

�

τ ji − gji (θ)
�2

. (9)

where N =
�

j |I
j | is the total number of measurements.

This estimate reaches accuracy bound (8) in the limit
(asymptotic efficiency) when the number of measurements
increases (see Borovkov (1984)). Even if the distribution of

the errors wj
i is not normal, the estimate θ̂ = argminθJ(θ)

has good properties.

Functional (9) is not convex, so its optimization is com-
plicated. Different scales of variables also make significant
difficulties. The gradient descent method used for mini-
mization showed an extremely low rate of convergence,
requiring a large number of iterations (about 1e4). And
convergence is not always achieved in experiments. In a
sufficiently large percentage of cases, the numerical proce-
dure makes fluctuations and “jumps”.

Second-order methods based on Newton’s method have a
very high rate of convergence (see Bakhvalov et al. (1987)),
but their application to the optimization of functional
(9) requires regularization. Thus, the classical Newton’s
method (see Bakhvalov et al. (1987)) has the form

θk+1 = θk −
�

∇2J(θk)
�−1

∇J(θk) , (10)

where ∇2J(θk) is the matrix of second derivatives calcu-
lated at the current approximation point θk. However, the
main condition of convergence of procedure (10) is positive
definiteness of ∇2J(θk), which is not fulfilled in the case
of functional (9). To overcome this difficulty Levenberg–
Marquardt modification (see Bakhvalov et al. (1987)) of
Newton’s method is used, which is constructed as follows.
Consider the matrix of the second derivatives

∇2J(θ) =
1

N

n
�

j=1

�

i∈Ij

�

∇f j
i (τ

j
i ; θ)∇f j

i (τ
j
i ; θ)

T

+ f j
i (τ

j
i ; θ)∇

2f j
i (τ

j
i ; θ)

�

=
1

N

n
�

j=1

�

i∈Ij

�

∇gji (θ)∇gji (θ)
T

− f j
i (τ

j
i ; θ)∇

2gji (θ)
�

.

Only the second term in the brackets is responsible for the
violation of positive definiteness of ∇2J(θ) because the

matrices ∇gji∇gji
T

are always positive semidefinite. Let us
consider the second term more closely using (6):

f j
i (τ

j
i ; θ)∇

2gji (θ) = −
f j
i (τ

j
i ; θ)

�r + v∆j − ri�





Ej
i ∆jEj

i 0

∆jEj
i (∆j)2Ej

i 0
0 0 0



 .

The values in the matrix are bounded by (∆j)2, since the
total “magnitude” of the term is determined by multiplier
in front of the matrix, which has an approximation near
the true value of θ:

f j
i (τ

j
i ; θ)

�r + v∆j − ri�
=

τ ji − gji (θ)

�r + v∆j − ri�
≈

wj
i

�r + v∆j − ri�
.

This value are small if the magnitude of the random errors
less than typical observation distance. In consequence, the
second term is less then the first one and can be neglected.
Another argument for neglecting is that the residuals f j

i

become smaller while J tends to minimal value.

Therefore, we can make an approximate matrix Qλ for
which positive definiteness is true

Qλ =
1

N

n
�

j=1

�

i∈Ij

∇gji (θ)∇gji (θ)
T

+ λI > 0 ,

and which can be used instead of ∇2J(θk) in (10):

θk+1 = θk −Q−1

λ ∇J(θk) . (11)

This method is known as the Levenberg–Marquardt algo-
rithm. Method (11), directly applied to the optimization,
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Fig. 1. Fig. 1. Levels for the Cramer–Rao lower bound of
accuracy (in meters) of estimation for the horizontal
coordinates of the aircraft for the specific location of
the receiving stations (marked with asterisks).

different j in some reasonable range of v and ∆j . As a
consequence, the dependence of matrix (7) on v is very
weak and it can be neglected in calculations.

Figure 1 shows the levels of the accuracy lower bound
(according to equation (8)) for the horizontal coordinates.
They are calculated for specific locations of the receiving
stations on the ground (shown by asterisks) and the nor-

mally distributed errors wj
i with zero mean and standard

deviation of 1 µs; the aircraft altitude is 2000 m.

3. NONLINEAR LEAST SQUARES ESTIMATE.
MINIMIZATION OF THE FUNCTIONAL

The solution of the multilateration problem and the de-
velopment of estimates of r can be made in different ways,
but apparently the most promising is maximum likelihood
estimates (see I.A.Mantilla-Gaviria et al. (2015)). In the
particular case of normally distributed observation errors
wj

i , such an estimate corresponds to the minimization of
mean square of residuals (4)

J(θ) =
1

N

n
�

j=1

�

i∈Ij

�

f j
i (τ

j
i ; θ)

�2

=
1

N

n
�

j=1

�

i∈Ij

�

τ ji − gji (θ)
�2

. (9)

where N =
�

j |I
j | is the total number of measurements.

This estimate reaches accuracy bound (8) in the limit
(asymptotic efficiency) when the number of measurements
increases (see Borovkov (1984)). Even if the distribution of

the errors wj
i is not normal, the estimate θ̂ = argminθJ(θ)

has good properties.

Functional (9) is not convex, so its optimization is com-
plicated. Different scales of variables also make significant
difficulties. The gradient descent method used for mini-
mization showed an extremely low rate of convergence,
requiring a large number of iterations (about 1e4). And
convergence is not always achieved in experiments. In a
sufficiently large percentage of cases, the numerical proce-
dure makes fluctuations and “jumps”.

Second-order methods based on Newton’s method have a
very high rate of convergence (see Bakhvalov et al. (1987)),
but their application to the optimization of functional
(9) requires regularization. Thus, the classical Newton’s
method (see Bakhvalov et al. (1987)) has the form

θk+1 = θk −
�

∇2J(θk)
�−1

∇J(θk) , (10)

where ∇2J(θk) is the matrix of second derivatives calcu-
lated at the current approximation point θk. However, the
main condition of convergence of procedure (10) is positive
definiteness of ∇2J(θk), which is not fulfilled in the case
of functional (9). To overcome this difficulty Levenberg–
Marquardt modification (see Bakhvalov et al. (1987)) of
Newton’s method is used, which is constructed as follows.
Consider the matrix of the second derivatives

∇2J(θ) =
1

N

n
�

j=1

�

i∈Ij

�

∇f j
i (τ

j
i ; θ)∇f j

i (τ
j
i ; θ)

T

+ f j
i (τ

j
i ; θ)∇

2f j
i (τ

j
i ; θ)

�

=
1
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n
�

j=1

�

i∈Ij

�

∇gji (θ)∇gji (θ)
T

− f j
i (τ

j
i ; θ)∇

2gji (θ)
�

.

Only the second term in the brackets is responsible for the
violation of positive definiteness of ∇2J(θ) because the

matrices ∇gji∇gji
T

are always positive semidefinite. Let us
consider the second term more closely using (6):

f j
i (τ

j
i ; θ)∇

2gji (θ) = −
f j
i (τ

j
i ; θ)

�r + v∆j − ri�





Ej
i ∆jEj

i 0

∆jEj
i (∆j)2Ej

i 0
0 0 0



 .

The values in the matrix are bounded by (∆j)2, since the
total “magnitude” of the term is determined by multiplier
in front of the matrix, which has an approximation near
the true value of θ:

f j
i (τ

j
i ; θ)

�r + v∆j − ri�
=

τ ji − gji (θ)

�r + v∆j − ri�
≈

wj
i

�r + v∆j − ri�
.

This value are small if the magnitude of the random errors
less than typical observation distance. In consequence, the
second term is less then the first one and can be neglected.
Another argument for neglecting is that the residuals f j

i

become smaller while J tends to minimal value.

Therefore, we can make an approximate matrix Qλ for
which positive definiteness is true

Qλ =
1

N

n
�

j=1

�

i∈Ij

∇gji (θ)∇gji (θ)
T

+ λI > 0 ,

and which can be used instead of ∇2J(θk) in (10):

θk+1 = θk −Q−1

λ ∇J(θk) . (11)

This method is known as the Levenberg–Marquardt algo-
rithm. Method (11), directly applied to the optimization,
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shows a good rate of convergence with the constant λ of
the order of 1e-3 in some experiments, but in another
situations it stops far from the minimum of functional (9).
The most probable reason why it happens is as follows.
The condition of stable work of (11) is ∇2J(θ) ≤ Qλ. But
if the initial point θ0 is far enough from the true value of
θ this condition can be violated.

This hypotesis suggests that this situation can be over-
come by dynamic changing the constant of regularization
λ. If the functional J ceases decreasing, but its value
remains large, then the constant should be increased: λ :=
2λ. If the step length is small, but there is a stable decrease
of the functional on several iterations, an attempt should
be made, on the contrary, to decrease λ (for example, by
the rule λ := λ/2).
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Fig. 2. Levels for the root mean squared deviation of
estimation for the horizontal coordinates of the air-
craft for the specific location of the receiving stations
(marked with asterisks).

With such a modification, the Levenberg–Marquardt al-
gorithm has shown a good performance on simulated data
in terms of recovery of the horizontal components of the
coordinates of r. In Fig. 2, the levels of accuracy of the
method are shown for the same configuration of the receiv-
ing stations as in Fig. 1. The empirical standard deviation

σ̂ =

√

∑K

i=1
(r̂ − r)2/K over K realizations is taken as the

accuracy estimate. The comparison of Figs. 2 and 1 shows
that the accuracy of the estimate obtained by minimizing
the functional (9) using the method (11) is comparable to
the Cramer–Rao lower bound of accuracy (8).
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