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Traditional laws of aircraft control in the landing operate unsatisfactorily when rapid wind
changes occur. For this reason, new ways of aircraft landing control are investigated recently [1-6].
This paper deals with the minimax approach based on the differential game theory methods [7, 8].
Applications of differential game theory to the landing problem were considered in [1-3, 9-13].

1. Introduction

There are many papers [3-6, 9, 14, 15] devoted to the investigation of the
aircraft motion during take-off and landing with rapid change of wind velocity
(windshear). Physical conditions leading to windshear, its mathematical models and
aircraft control are analyzed.

This paper deals with the landing problem for middle-sized aircraft in the
conditions of wind disturbance. We consider the aircraft motion along the glide path
till the moment of passing the runway (RW) threshold. The information we get about
the wind is supposed to be minimal. Namely, we suppose that only the deviation
boundary of the wind velocity from its nominal value and the nominal value are
known. Any other information about the windshear zone and the internal distribution
of wind velocity is absent. So, the problem that appears naturally is to find the
minimax closed-loop control which can cope with arbitrary variation of the wind
velocity in noted boundaries.

Using methods of the antagonistic differential game theory [7, 8] we obtain
the minimax solution for auxiliary linear problems. Further, this solution is applied
for computer simulation of the motions in a complete nonlinear system. Simulation
results deal with the case when the windshear is stipulated by aircraft flight through
microburst zone. The microburst is caused by falling mass of air which hits the ground
and gives vortex. The mathematical model of the microburst is taken from [14].
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2. Nonlinear system of aircraft landing motion

The aircraft motion during landing is described by a differential equations
system of 12th order. The state vector includes three coordinates x, y, z of mass center
in the coordinate system connected with the RW surface (Fig. 1), angles of pitch 3,
yaw ¥, bank y and corresponding linear and angular velocities. These equations are
specified, for example, in [16, 17].

'y

*\.\9__ ]

y

RW

Fiy. 1. Coordinate system

The control factors are deviations of the elevator é,, the rudder §,, the
ailerones 6, and change of thrust force P. Equations of servo and engine dynamics
are supplemented to the main system of aircraft motion. So, the noted factors enter
in the broadened state vector and new control parameters are the scheduled
(commanded) deviations &, 9, 0, d,. Every parameter has upper and lower
restrictions. As a result we get the complete system of differential equations which
we write down in vector form as

E=1(E o, W). 2.1

Here 6,=(0.s, 05, 3,55 0ag)” is the control vector, W=(W,, W,, W,)" is the disturbance

vector, consisting of three wind components along the x, y, z axes.

3. Minimax control law

Nominal aircraft motion during landing till the moment of passing RW
threshold is a uniform motion (without rotation) along the descending rectilinear
glide path.

Control problem is to bring real motion near enough to the nominal motion
in the presence of wind disturbance. It is also desirable that the performance of the
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control law would not demand any accurate and detailed information about the wind.
We assume that for the deviations of wind velocity components W,, W,, W, from the
nominal values W,,, W,,, W, only approximate characteristics of restrictions are
known. The nominal values are assumed to be known as well. To solve the problem
we apply minimax approach using the methods of differential games.

Effective computer programs have been created [9, 12, 18-20] to find optimal
control laws (strategies) in linear differential games with fixed terminal moment and
convex payment function, depending on two coordinates of the state vector. System
(2.1) is nonlinear. However, we can linearize it, solve auxiliary differential games and
use the results to the initial nonlinear system. So, having the nominal values W,,,
W,o and W,,, the glide path inclination, the nominal relative velocity, we calculate
values of the state variables, corresponding to the nominal motion of system (2.1).
The linearization of system (2.1) with respect to the nominal motion gives a linear
controllable system, desintegrating to two subsystems of vertical (longitudinal) and
lateral motions. The state vector of the vertical motion (VM) subsystem consists of
deviations 4x, Ay and some quantities which determine these deviations. The state
vector of lateral motion (LM) subsystem consists of deviation 4z and quantities which
determine Az.

For each of the subsystems we consider an auxiliary differential game with
fixed terminal time 7, geometric restrictions on control variables and wind disturbances
and with convex payment function depending on two state vector coordinate at the
moment T In the VM subsystem such coordinates are 4y and Ay, in the LM system
these coordinates are 4z and 4z. The first player chooses the control variables to
minimize the payment function. The second player, choosing the wind disturbances,
maximizes the payment function. It is not necessary to give the moment T any physical
meaning in auxiliary problems.

Variables d,, and J,, in system (2.1) are intended for the relative velocity and
sideslip angle stabilization near the nominal values. So, it is not natural to find
closed-loop laws for 6, and 4, using the solution of the auxiliary problems mentioned
above. Therefore, formulating the auxiliary problems, we assume that the thrust force
is a constant and is equal to its nominal value (i.e. 46,,=0) and the variation of 4J,,
satisfies a linear differential equation corresponding to traditional rudder control.
With that we omit the restriction on 48,,. As a result we obtain the only control
factor A4, in the VM subsystem and the control factor 43, in the LM subsystem.

To take into account the inertial character of wind velocity variations along
the motion, we suppose that variables AW,, AW,, AW, satisfy additional linear
differential equations, for example,

AW, =k(AF .— AW,)
AF, =ky(w —AF). 3.1)
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Here w, is a new independent variable, constants k; and k, determine the inertial
character of AW,. Similar equations are considered for AW, and AW.,. Variables w,,
w,, w, are interpreted as new disturbance factors. We add the equations for AW, and
4W, to the VM subsystem and the equations for 4W, to the LM subsystem.

Solving the auxiliary problems on computer, we find optimal laws for 45, and
406,,. These laws are realized by means of sets K, and K, of switch lines [9, 13, 18, 19].
Both sets are defined on a collection of moments t; of reverse time counting off the
terminal moment 7. The sets K, and K, give the desired control laws for components
O, and J,, to initial system (2.1). Using these laws we prognose the time remained
till the moment of passing the RW threshold. Depending on the time prognose, certain
switch lines are used to choose values 4, and 8,,. Simulating motions of system (2.1),
we assume that the control factors J,, and 4, are obtained by means of control laws
accepted nowadays.

So, speaking about the minimax control, we mean the way of finding control
factors 4, and d,, from the auxiliary linear differential games. The factors d,, and J,,
are constructed by traditional methods.

4. The auxiliary linear differential games

The linear VM system is

Xx=AX+Bu+C,, xe R, 4.1
0 1 0 0 0 0 0 0 0 0 0
0 -0050 0 —-0097 2642 O 0.063 0.050 0 0.097 0
0 0 0 1 0 0 0 0 0 0 0
0 0.241 0 -0639 45278 O 1448 —0.241 0 0.638 0
0 0 0 0 0 1 0 0 0 0 0
A, = 0 0 0 0.007 —-0.501 —0.526 —0.383 0 0 —0.007 0
—4 0 0 0 0
0 0 —0.5 0.50 0 0
0 0 -3 0 0

0 0 0 —-0.5 0.5

0 0 0 0 -3

T
00000040000, (000000003007

X=(Xy, X3, ..., X11)7, u=A485,, v=(w,, w,)T.
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Here x, = 4x, x3=A4y are deviations from nominal motion in x and y, respectively;
x5=A9 is a deviation of pitch angle. The coordinate x, is a deviation of the elevator
from its trim position. By means of variables xg, X, we describe a variation of AW,.
The corresponding equations coincide with (3.1), xg=AW,. Similarly, variables x,,,
xy, are used for description of AW, variation (x,,=4W,). The control factor of the
first player is the scheduled deviation 44, of the elevator. The parameters w,, w, are
used to obtain wind disturbances and belong to the second player.
The restrictions are the following:

1

IA(SHIglOdeg%é, Iw,|<10msec™!, |w,|<Smsec™!.

Introduce a function ¢, which depends on coordinates x;=A4y and x, = 4y.
Let M, be a convex hexagon on the plane x3, x, with apexes (=3, 0), (=3, 1),
(0, 1), (3, 0), (3, —1), (0, —1). Suppose

@4(x3, Xg)= min {c20:(x3, x4)T €cM,}.

Consider an antagonistic differential game with dynamics (4.1), fixed terminal
moment T and payment ¢, The first player tries to minimize values of the function
¢, at the moment T. The aim of the second player is opposite. The set M, can be
considered as a tolerance for deviations x;=A4y and x, =4y at the moment T. The
function ¢, indicates a deviation from the tolerance. The optimal strategy of the first
player in game (4.1) will be used to define §,, in system (2.1).

The linear LM system is

Xx=A*x+B*u+C*, xeR!', 4.2)

0 1 0 0 0 0 0 0 0 0 0 ]
0 —0077 —5555 0 9272 0  —1485 0 0077 0 0
0 0 0 1001 0 0 0 0 0 )
0 —0013 —0933 —0259 —0088 —0030 —0246 —0046 0012 O O
0 0 0 —-0051 0 1 0 0 0 0 0
a*= | 0 —0033 —2386 —0953 —0226 —1459 —0233 —0689 0033 0 O
-4 0 0 0o 4
. 0 -4 0 0 o
0 0 -05 05 0
0 0 0o -3 0

| 0 —0058 —4202 —0365 —0397 —0136 —1105 —0207 0058 0 —04

B*=(0,0,0,0,0,0,0,4,0,0,0)", C*=(0,0,0,0,0,0,0,0,0,3,0)",

T — —_
X=(Xg, X35 «+-> X11)"s u=49,, v=w,.
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Here x, =4z is a deviation in z from the nominal motion; x; =4y and x,= A4y are
deviations of yaw and bank angles. The coordinates x,, x5 are deviations of the
rudder and ailerons (46, and 46,); x,,=46,,. By means of variables x,, x,, we
describe variation of AW, (x,=A4W,). The control factor of the first player is the
scheduled deviation 448, of the ailerons. The parameter w, is used to obtain wind
disturbance and belongs to the second player.

Restrictions are

'
40, < — | < -1
| 5as|_10deg180, |w,[<£10 m sec

Introduce a function ¢* depending on coordinates x, =Az and x,=47. Let
M* be a convex hexagon on the plane x,, x, with apexes (—6, 0), (—6, 1.5), (0, 1.5),
6, 0), (6, —1.5), (0, — 1.5). Suppose

©¥(x1, Xp)=min {c20:(x;, x;)T e cM*}.

Constder an antagonistic differential game with dynamics (4.2), fixed terminal
moment T and payment ¢*. The first player endeavours to minimize values of the
function ¢* at the moment T. The aim of the second player is opposite. The set M *
can be considered as a tolerance for deviations x, =4z, x, =47 at the moment T.
The function ¢* indicates a deviation from the tolerance. The optimal strategy of
the first player in game (4.2) will be used to define J,, in system (2.1).

In systems (4.1) and (4.2) the dimension of linear variables is the meter. Angles
are measured in radians and time is in seconds.

For the calculation of coefficients in systems (4.1) and (4.2) we used the following
data: the glide path inclination @= —2.66 deg, the nominal relative velocity
Vo=72.2msec”?, the nominal wind components W,,= —5 m sec™?, W,o = W,, =0.

5. Optimal first player strategy in the linear
differential game

The main features characteristic to differential games (4.1), (4.2) are the following,
Each of the games has a fixed stopping instant and a convex payment function which
depends on two coordinates of the phase vector. Besides, the control factor of the
first player is scalar. These features simplify the specifying of the optimal first player
strategy. The strategy is realized by means of the switch surface in the space t, y,, y,
of equivalent [7, 8] second-order game. The relation between vectors y=(y,, y;)”
and x is described by the formula y(t) = X (T, t)x(t) (y(t) = X *(T, 1)x(t)) where X (T, )
(X*(T, 1)) is a matrix composed of the third and fourth (the first and second) rows
of the fundamental Cauchy matrix for the homogeneous part of system (4.1) ((4.2)).
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On one side from switch surface the optimal control takes an extremal value of one
sign, on the other side the optimal value is opposite. The mathematical proof of the
optimality of such a control law (by means of switch surface) and the analysis of its
stability are given in [18, 19]. Corresponding computational procedures are stated
in [9].

The switch surface is realized on computer as a set of its sections on the given
collection of the time moments. These sections are called the switch lines. The switch
lines IT,(z) for problem (4.1) are shown in Fig. 2. The lines have been built for the
reverse time moments 1=7, 11, 15. Let x(¢;) be a state of system (4.1) at a moment
t;. If the point y(t;)= X (T, t;)x(t;) lies in the direction of vector D (t,)=X (T, t,)B,
with respect to the switch line I7,(t;), corresponding to the moment 7,= T —t¢;, then
46,,= —10 on the next step of the discrete scheme of control. We put 46_,= + 10 in
the opposite situation of the point y(¢;) with respect to the line IT,(z;). Similarly, the
choice of optimal control factor 44, in system (4.2) is made with the help of switch
lines IT*(z) and vector D*(t)= X %(T, t)B*.

Y,4
15

4

Fig. 2. Switch lines

6. Microburst model

Simulating system (2.1) motions, we suppose that the wind disturbance is caused
by the aircraft flight through the microburst zone. The microburst model we used
has been taken from [14]. Below we give an outline of this model.

The microburst is idealized as a three-dimensional axially symmetric vortex
field. In this field we distinguish the thoroidal region (“core”) where the wind velocity,
being zero in the center, increases linearly along the radius to the frontier of the core.
Outside the core the vortex field is determined by the stream function. Differentiation
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of this function gives radial and vertical components of the wind velocity. The radial
one is resolved into two components, the first of which is parallel and the second is
orthogonal to the RW axis. The microburst is given by three parameters: ¥~ is the
modulus of the wind velocity vector in the central microburst part, 5 is the altitude
of the central part, and 2 is the radius of the vortex. The core radius is equal to
0.8 . The disposition of the microburst with respect to the glide path is determined
by two coordinates of its center in the horizontal plane.

The microburst we use for simulation has the following parameters: ¥ =6 msec™ L
# =700 m, Z=1200 m. A computed picture of the wind velocity field in the vertical
plane, passing through the microburst center, is shown in Fig. 3.
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Fig. 3. Wind velocity field in vertical section of microburst
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7. Simulation results

Let the initial system (2.1) position in x at the moment ¢, be 8000 m from the
RW threshold and values of all state coordinates correspond to the nominal motion
along the glide path.

Consider two methods of control for system (2.1). The method I, uses accepted
nowadays autopilot algorithms for constructing d,, d.,, J,, and J,,. The second
method I, is the minimax law. In this method factors d,,, J,, are constructed by
means of switch lines obtained from auxiliary differential games (4.1), (4.2). Factors
d,s> 0,5 are constructed with the help of accepted algorithms. Let T=15 sec for
problems (4.1), (4.2).



BOTKIN ct al.: AIRCRAFT LANDING CONTROL IN WINDSHEAR 231

1 i
0 200 4000 6000

AW,, AW, AW,; ms™

Fig. 4. Landing simulation results. Microburst center coordinates: DX = 3000 m, DZ = 500 m
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=20+

m;
™

AW,,AW,, AW, ; ms’
o

-5

v
Fig. 5. Landing simulation results. Microburst center coordinates: DX =3000 m, DZ =1500 m

Denote by E a collection of reverse time moments t; on the interval [0, T] =
=[0, 15]. We suppose the switch lines have been built for every 1, € E. In the method
I, the switch lines are used in the following way. Let d(¢) be the distance in x up to
the RW threshold at a moment t>t, and V,, be the nominal motion velocity in x.
Then s(t)=d(t)/V,o is the prognose time remained till passing the RW threshold. For
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obtaining 6,(d,,), if s(t)= T =15 sec, we use the same switch line corresponding to
1=T If s(t)< T, we use the line corresponding to the moment 1; € E nearest to s(t).
So, our control is comparatively rough while d(t)= Vo T 1000 m. If d(t) < V4T, the
control is more qualitative.

In system (2.1) wind velocity components W,, W,, W, are calculated by formulas
W,=AaW, + W, W,=AW, + W, W, =AW, + W, where AW,, AW, AW, are taken
from the microburst model; W,o= —5 m sec ™!, W,, = W,, =0. Consider two variants
of the microburst center disposition in the horizontal plane: 1) the displacement DX
in x from the initial aircraft position is 3000 m (or 5000 m from the RW threshold),
the displacement DZ in z orthogonally to the RW axis is 500 m, 2) DX =3000 m,
DZ =1500 m.

Simulation results for the control methods I,, I, are shown in Figs 4 and 5.
We give graphs of vertical 4y and lateral 4z deviations from the nominal motion
and also realizations of deviations AW,, AW,, AW,. The last curves correspond to
the control method I,. Realizations AW,, 4AW,, AW, for the method I, are practically
the same. For all the graphs the horizontal axis is the distance passed in x. Figure 4
(5) corresponds to the first (second) variant of microburst center disposition. The time
discrete for computing of control factors and wind disturbances was equal to 0.1 sec.

It can be seen that the results for the minimax method I, are better than for
the traditional method I,.

8. Concluding remark

In conclusion we emphasize once more that the computation of the minimax
control method demands neither accurate information about the disposition of the
extremal wind disturbance zone nor any information about the wind velocity field
in that zone. It is enough to describe an approximate amplitude of the wind velocity
variation. This is the principal difference of the approach, based on the differential
game theory, from the methods, given in [4-6], where such information is essential.
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YHpaB.rleHue CaMo0./1IeTOM Ha MocCaKe NpH CABHI¢ BETpa
H. [I. BOTKHH, B. M. KEFH, B. C. TALIKO., B. JI. TYPOBA
(Ceepanosck, Jlenunrpana)

PaccMaTpHBaeTCs 3amava YNpPABJICHHS CPEAHUM TPAHCIOPTHBIM CAMOJIETOM Ha N[OC4AKE B
YCJIOBHSIX PE3KOT0 M3MEHEHHSA CKOPOCTH BeTpa (casur BeTpa). [Tpouece nocaaku ucceayercs 40 MOMEHTA
OpoJieTa Topla B3JETHO-NOCAA04HO#M nosockt. [Tpeanonaraercs, 4T0 OTHOCHTENBHO BETPA H3BECTHBI
OPHEHTHPOBOYHO JIMILb NPEAE/Ibl BO3MOXHBIX OTKJIOHEHMI €10 CKOPOCTH OT HEKOTOPOTO HOMHHAJILHOTO
NIOCTOSHHOTO 3HAYEHUS H CaMo 3TO 3HaveHue. Kakas-1n60 MHPOPMALUA O NPOCTPAHCTBEHHOM PACIO-
JIOXKEHUH 30HbI CABHIa BETPA, KK U CBEACHHUA O N0JI€ CKOPOCTH BETPA B HElf, CYUTAIOTCH OTCY TCTBYIOLIMMH.

s pewenns 3anaun o6 ynpap/icHHN NPHBJIEKAIOTCA METOB! TEOPHH NMO3UUHOHHBIX Auddepen-
unansubix urp [7, 8]. McxonHas HenuHeitHas cucreMa muddepeHiHanbHbIX YPABHEHHH TMHEAPH3YETCH
OTHOCHTEILHO HOMHHAJIBHOTO JIBUXEHHA 110 NPAMONMHEHHOH riuccane cHukeHusa. [MonydenHuas B
pe3ylibTaTe JIMHEHHAs CHCTeMa pPACNaZdeTcs HA MOJACHCTEMY ABHXKCHUS B BEPTHKANbHON MJIOCKOCTH
(OPOOJIBHOE NBHXEHHE) H MOACHCTEMY GOKOBOro IBHxeHHs. [ Kax Aol M3 NOACHCTEM CTABHTCH
BCIOMOraTebHAaA JMHEHHas nupdepeHUMaNbHAs Hrpa ¢ (PUKCHPOBAHHBIM MOMEHTOM OKOHYAHHS W
BbINYKJIOH TepMHHAIbHOH ByHKUHE NIaThl, 3aBUCALIEH OT ABYX KOOPAUHAT $a30BOro BeKTOpa. 3a Takue
KOODJMHATH! B NOJCUCTEME NPOAOIBLHOTO JBHXKEHHS OGEpyTCS OTKIOHEHHE 110 BBICOTE H €ro CKOPOCTh, B
H0ACHCTEME GOKOBOTO ABHXEHUS — GOKOBOE OTKIIOHEHHE M ero ckopoctsb. IMepsrlii Urpok BHIGOPOM
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YIPABJICHHS MUHUMMU3UPYET 3HAYEHHA (PYHKIMN TLIAThI, HHTEPECH BTOPOro, PACMOPSKAIOWIErocs BeT-
PpOBOili MOMEXOH, MPOTHBONOJIOKHBI.

Vka3auHbie auHeiinble AnddepeHunanbibe UIPbl NOAKAIOTCS pellieHuto Ha DBM npu nomown
pa3pabOTAHHLIX B HACTOALUEE BPEMsi YMCIEHHBIX Metono [9, 13, 18-20]. Dnementom pewenus, B
4aCTHOCTH, ABJASETCH ONTUMAJbHAS (MHHUMAKCHAA) CTPATErus nepporo urpoka. OnTuMasbHOe ynpas-
JIEHHE TIPH ITOM ONpeesAeTcA HabOPOM JIHHHIA MEPEKAIOUYCHUS, HMEIOLLMX HECIOXHYIO CTPYKTYDY.

MuHUMAKCHBIH CIOcO0 ynpaBneHus, NOTy4EHHBIH B PaMKax BCIIOMOTATENHBIX 3a[a4, HCIONb3Y-
€TCs 3aTeM B MOJHO# HeNTMHelHOR cucTeMe. [TpHBOAMMBIE B CTATHE Pe3yIbTaThl MOAEIHPOBAHUSA poOLEcca
NOC4AKH OTHOCATCA K CIY4dl0, KOTA4 BETPOBOE BO3MYLIEHHE OOYCIOBIEHO MPOXOXKICHHEM CaMOJeTa
Yepe3s 30HY MHKPOB3pbIBA. MUKPOB3DLIB NPEACTABNSET COG0M HUCXOAALMI MOTOK BO3AyXa, yAapsio-
LIMICH O IOBEPXHOCTDb 3eMJIM M PacTekaloLuiica 3aTeM ¢ 0OpazopanueM Buxpsa. MaTemaTtudeckas Moaens
MHKPOB3pbIBA 3aHMCTBOBaHa M3 pabotsi [14].

Mpu MonenpoBaHHM MHHHMAKCHBIA CNOCO0 yNpaBJIeHHS CPABHUBAETCS ¢ TPAAULIMOHHBIM, IIPUH-
ATBIM B HACTOAIIEE BpeMA. B 1IeIOM pe3y/ibTaThl MOAEAMPOBAHHA JUII MHHHMAKCHOro Ccriocoba cyuuect-
BEHHO JIyullle.
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