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Abstract: In this paper, a differential game is considered where the payoff is the
time required to reach a given terminal set. Sufficient conditions for coincidence a
given discontinuous function (tested function) with the value function of the game
are derived. The conditions are formulated in terms of classical notions of u- and
v-stable functions, but additionally fulfillment of so-called correct compressibility
condition for closed level sets of the tested function is demanded.
A given example shows that the correct compressibility condition is not excessive.
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1. INTRODUCTION

This work is devoted to a problem of deriving
conditions on a given discontinuous function to
provide its coincidence with the value function of
a time-optimal differential game under investiga-
tion. The research is carried out in the frame of
the positional formalization of differential games
introduced in (Krasovskii and Subbotin, 1988).

In the theory of differential games, problems of
feedback control under uncertainty and distur-
bance are investigated. The useful control is con-
sidered as an action of the first player, which
minimizes a payoff functional on the set of all
trajectories of a dynamical system. The distur-
bance is regarded as a result of control action of
the second player, which is aimed to maximize the
same functional. The classical approach to solving
a differential game consists of finding the value
function, which puts an optimal guaranteed result
into correspondence with the initial position of the

1 The work was supported by the Russian Foundation for
Basic Research, project no. 03-01-00415

game. On the base of the value function, feedback
strategies of the players are constructed.

In case of differentiable value function, the prob-
lem of its searching is reduced (Isaacs, 1965) to
solving a boundary value problem for a partial dif-
ferential equation (PDE) of the first order (Isaacs-
Bellman equation).

If the value function is non-smooth but con-
tinuous, then basic notions for its characteriza-
tion are continuous u-stable and v-stable func-
tions (Krasovskii and Subbotin, 1988, p. 145)
introduced in the theory of positional differen-
tial games. In this case, u-stable (v-stable) func-
tions under corresponding boundary conditions
majorize (minorize) the value function of differ-
ential game, which is the only possesses the both
properties.

Discontinuous value functions arise, for example,
in time-optimal problems. It leads to notions of
semicontinuous u-stable and v-stable functions.
With that, the characterization of value functions
becomes more complex. Namely, in time-optimal
game problem, the value function is the only
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lower semicontinuous u-stable function satisfying
zero boundary condition on the border of the
terminal set, and the function is a pointwise limit
of a sequence of upper semicontinuous v-stable
functions satisfying the same boundary condition.
Verification of existence of the sequence as far
as its construction are difficult enough even for
problems in plane.

In this work, sufficient conditions are suggested
for coincidence a discontinuous tested function
with the value function of a time-optimal differ-
ential game under investigation. The conditions
include u-stability of lower semicontinuous tested
function, v-stability of upper closure of the tested
function, and fulfilment of correct compressibility
condition for the level sets of the tested function.

Properties of u- and v-stability were researched
very well in the theory of differential games. Vari-
ous infinitesimal criterions of u- and v-stability of
semicontinuous functions were derived (Subbotin,
1995). Let us also remark that the notion of u-
stable (v-stable) function corresponds to the no-
tion of upper (lower) generalized viscosity solution
of the first order PDEs (see, for example, (Bardi
and Capuzzo-Dolcetta, 1997)).

Checking correct compressibility of a closed set is
a self-sufficient problem. Its solving is not obvious
in a general case. In this work, the problem of
checking correct compressibility of sets is not
investigated.

In optimal control theory, the method of dynam-
ical programming is analogues to the approach
based on the value function in differential games.
If the optimal result function (Bellman function)
is differentiable, then the problem of its search-
ing is reduced to solving a corresponding bound-
ary value problem for a PDE of the first or-
der (Bellman equation). In this case, the Bell-
man function defines an optimal feedback con-
trol. If the Bellman function is non-smooth but
continuous, then a regular synthesis by Boltyan-
ski (Boltyanski, 1969) can be used to solve the
problem in a class of feedback controls. Justifi-
cation of the regular synthesis is based on the
well-known Pontryagin Maximum Principle. If the
Bellman function is discontinuous, then construc-
tion of an optimal feedback control usually takes
into account dynamics peculiarities of each par-
ticular problem.

The sufficient conditions suggested in this article
are also valid for control problems, which can be
considered as special cases of differential game
problems (with null constraint on control of the
second player). But there are no any simplifica-
tions in formulation of the conditions, i.e. checking
v-stability of the upper closure of a tested function
is required despite the second player’s absence.

2. PROBLEM STATEMENT

A dynamical control problem is considered where
the motion of a system is described by the follow-
ing equation

ẋ(t) = f(x(t), u(t), v(t)), t ≥ 0. (1)

Here, x(t) ∈ Rn is a phase state of the system
at an instant t; u(t) ∈ P and v(t) ∈ Q are
controls of the first (minimizing) and the second
(maximizing) players; P and Q are compact sets.

Assume that the function f(x, u, v) is continuous
in totality of variables, it satisfies the inequality

‖f(x, u, v)‖ ≤ κ(1 + ‖x‖), κ = const > 0,

and the Lipschitzian condition in variable x is
fulfilled in any bounded set X ⊂ Rn, i.e.

‖f(x(1), u, v) − f(x(2), u, v)‖ ≤ λ(X )‖x(1) − x(2)‖
for all x(1), x(2) ∈ X , u ∈ P , v ∈ Q. In addition,
let us suppose that the following saddle-point
condition is satisfied for all x, p ∈ Rn:

min
u∈P

max
v∈Q

〈p, f(x, u, v)〉 = max
v∈Q

min
u∈P

〈p, f(x, u, v)〉.

The aim of the first player is to approach the phase
point x(t) from an initial position x0 to a given
closed set M ⊂ Rn. The second player tries either
to prevent an encounter with M or to maximize
the time till it occurs.

A positional strategy U for the first player is an
arbitrary function U : Rn → P . The strategy
U generates a bundle X1(x0, U) of constructive
motions. A constructive motion x(·) is defined
as a function, which is, in any bounded interval
(0, ϑ̄), a uniform limit of a sequence of trajectories
{x(k)(·)}∞1 , such that x(k)(0) = x0 and for t ∈
[τ

(k)
i , τ

(k)
i+1), i = 1, 2, . . ., the equation

ẋ(k)(t) = f(x(k)(t), U(x(k)(τ
(k)
i )), v(k)(t))

is hold. Here, v(k)(·) : [0,∞) → Q is a measurable

function, the sequence {τ (k)
i }∞i=0 is such that

0 = τ
(k)
0 < τ

(k)
1 < . . . < τ

(k)
i < τ

(k)
i+1 < . . . ,

and supi(τ
(k)
i+1 − τ

(k)
i ) → 0 as k → ∞.

A positional strategy V : Rn → Q for the second
player and the bundle X2(x0, V ) of constructive
motions generated by V are defined similarly.

Let J(x(·)) = min{t ≥ 0 : x(t) ∈ M}. Under the
conditions assumed for the function f(x, u, v), the
value

T (x0; M) = min
U

sup{J(x(·)) : x(·) ∈ X1(x0, U)}

= sup
V

inf{J(x(·)) : x(·) ∈ X2(x0, V )}

of the game exists for any x0 ∈ Rn. The function
T ( · ; M) : Rn → [0,∞] is known as the value
function of the time-optimal differential game.
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The purpose of the work consists of finding such
conditions on a function ϕ( · ) : Ω → [0,∞], that
the equation ϕ(x) = T (x; M) is valid for x ∈ Ω.
Here, Ω ⊆ Rn is a closed set and M ⊂ Ω.
Desirable conditions should use the properties of
the function ϕ( · ) only and should not require any
additional constructing.

3. PROPERTIES OF THE VALUE FUNCTION

Let us give main properties of the value function
to use later on.

Let us introduce level sets of the value function:

W (t; M) = {x ∈ Rn : T (x; M) ≤ t}, t ≥ 0.

For any τ > 0 and x 6∈ W (τ ; M), the equation

T (x; M) = T (x; W (τ ; M)) + τ

is valid. The fact is easily seen taking into account
the definition of the value function.

From the results of (Krasovskii and Subbotin,
1988; Subbotin, 1995), it follows that T ( · ; M) is
a lower semicontinuous function, M = W (0; M),
and the u-stability property is fulfilled:

(Tu) for any y0 ∈ Rn\M and v∗ ∈ Q, there exists
τ > 0 and such a solution y(·) : [0, τ ] → Rn of the
differential inclusion

ẏ(t) ∈ co {f(y(t), u, v∗), u ∈ P}, y(0) = y0,

that either the inequality

T (y(t); M) ≤ T (y0; M) − t

holds for all t ∈ [0, τ ], or x(t) ∈ M for a certain
t ∈ [0, τ ].

For the upper closure

T ∗(x; M) = lim sup
y→x

T (x; M)

of the value function the following v-stability
property is fulfilled (Subbotin, 1995):

(Tv) for any y0 ∈ Rn\M and u∗ ∈ P , there exists
τ > 0 and such a solution y(·) : [0, τ ] → Rn of the
differential inclusion

ẏ(t) ∈ co {f(y(t), u∗, v), v ∈ Q}, y(0) = y0,

that the inequality

T ∗(y(t); M) ≥ T ∗(y0; M) − t

holds for all t ∈ [0, τ ].

4. CORRECTLY COMPRESSIBLE SETS

Let D ⊂ Rn be a closed set and intD denotes
interior of D. Under the condition intD 6= ∅,
define

D[ε] = {x ∈ D : B(x, ε) ⊆ D}, ε > 0,

εD = max{ε > 0 : D[ε] 6= ∅}.
Here, B(x, ε) is a ball of radius ε with the center
in x.

The following assertion will be useful.

Lemma 1. Let D be a closed set, intD 6= ∅,
x∗ ∈ Rn, and

lim
ε→+0

T (x∗;D[ε]) = T (x∗;D).

Then the function T (·;D) is continuous at x∗.

The proof of Lemma 1 is omitted.

Definition. A set D ⊂ Rn is called correctly
compressible with respect to the dynamic (1) if
there exists ϑ > 0, such that

(C1) W (ϑ;D) 6= D and W (t;D) = int W (t;D) for
any t ∈ [0, ϑ];

(C2) for any x ∈ int W (ϑ;D) \ D, it holds

lim
ε→+0

T (x;D[ε]) = T (x;D).

Observe that if W (ϑ;D) 6= D, then the condition
(Tu) of u-stability implies the function T (·;D)
takes all values from the interval (0, ϑ). This
allows to choose the value ϑ > 0, satisfying
conditions (C1) and (C2), as near to zero as
desired.

Let us give simple conditions, which provide the
property of correct compressibility of a set D.

Let the set D has a smooth boundary ∂D, D =
intD, and for any point x ∈ ∂D the equation

min
u∈P

max
v∈Q

〈ν(x), f(x, u, v)〉 < 0 (2)

is fulfilled, where ν(x) is an exterior normal to the
set D at point x ∈ ∂D.

Choose ϑ > 0 and x∗ ∈ W (ϑ;D). Condition (2)
and the definition of the value function imply
that for any τ > 0 the first player guarantees
approaching the set intD from the point x∗ within
the time interval [0, T (x∗;D) + τ ]. It means that
there exists ε∗ > 0, such that

T (x∗;D[ε∗]) ≤ T (x∗;D) + τ.

From here, taking into account lack of increase of
the quantities T (x∗;D[ε]) as ε → +0, we have the
limit relation

lim
ε→+0

T (x∗;D[ε]) = T (x∗;D).

So, condition (C2) from the definition of correctly
compressible set is fulfilled for any ϑ > 0.

For any x∗ ∈ Rn \ ∪ϑ≥0W (ϑ;D) we get

T (x∗;D) = T (x∗;D[ε]) = ∞, ε ∈ (0, εD].

Due to Lemma 1, the value function T (·;D) is
continuous on Rn. Let us remark that conditions
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of continuity of the value function under weaker
assumptions on the set D was proved in (Bardi
and Capuzzo-Dolcetta, 1997).

The validity of condition (C1) for any ϑ > 0
follows from continuity of the function T (·;D) and
the property (Tu).

Thus, the set D is correctly compressible.

More complicated sufficient conditions for correct
compressibility are connected with a discontinu-
ous value function and not investigated here.

5. THEOREM ABOUT SUFFICIENT
CONDITIONS

Theorem. Let Ω ⊆ Rn and M ⊂ Ω be closed
sets, a function ϕ( · ) : Ω → [0,∞] is lower
semicontinuous, and the following conditions are
fulfilled:

(A1) ϕ(x) = 0, x ∈ M ;

(A2) (u-stability) for any y0 ∈ Ω \ M and
v∗ ∈ Q, there exists τ > 0 and such a solution
y(·) : [0, τ ] → Ω of differential inclusion

ẏ(t) ∈ co {f(y(t), u, v∗), u ∈ P}, y(0) = y0,

that either the inequality

ϕ(y(t)) ≤ ϕ(y0) − t, t ∈ [0, τ ],

is valid, or y(t) ∈ M for a certain t ∈ [0, τ ];

(A3) (v-stability) for any y0 ∈ Ω \ M and
u∗ ∈ P , there exists τ > 0 and such a solution
y(·) : [0, τ ] → Rn of differential inclusion

ẏ(t) ∈ co {f(y(t), u∗, v), v ∈ Q}, y(0) = y0,

that the inequality

ϕ∗(y(t)) ≥ ϕ∗(y0) − t, t ∈ [0, τ ],

is valid, where

ϕ∗(x) =





lim sup
z→x

ϕ(z), if x ∈ int Ω,

sup
z∈Ω

ϕ(z), if x 6∈ int Ω;
(3)

(A4) the level sets

D(t) = {x ∈ Ω : ϕ(x) ≤ t}, 0 < t < sup
z∈Ω

ϕ(z),

are correctly compressible.

Then ϕ(x) = T (x; M), x ∈ Ω.

The upper semicontinuous function ϕ∗(·) : Rn →
[0,∞] defined by (3) will be called upper closure
of the function ϕ(·) : Ω → [0,∞].

Remark 1. Let conditions (A1)–(A3) are fulfilled
for the function ϕ(·) and the property of correct
compressibility of the level sets D(t) defaults only

Fig. 1. Example: the terminal set M and the set
of solvability l.

in a single point a ∈ (0, supz∈Ω ϕ(z)). In this case,
the theorem about sufficient condition can firstly
be applied to the function ϕ(·) : D(a) → [0,∞).
It gives the equality ϕ(x) = T (x; M), x ∈ D(a).
Secondly, introducing a notation

M1 = D(a), ϕ1(x) =

{
ϕ(x) − a, if x 6∈ M1,

0, if x ∈ M1,

one can apply the theorem to the function ϕ1(·) :
Ω → [0,∞] and a time-optimal differential game
with the terminal set M1. From here, using the
relation T (x; M1) = T (x; M) − a, one gets the
equality ϕ(x) = T (x; M) for all x ∈ Ω.

Remark 2. Properties (Tu) and (Tv) show that
conditions (A1)–(A3) are necessary for the value
function. If the function ϕ(·) is continuous, then
conditions (A1)–(A3) are necessary and suffi-
cient (Subbotin, 1995) for the equality ϕ(x) =
T (x; M), x ∈ Ω.

Let us give an example to show that in case
of discontinuous function ϕ(·) one cannot refuse
condition (A4).

Consider a linear dynamical system

ẋ1 = x2 + v1, ẋ2 = −x1 + u + v2,

x ∈ R2, |u| ≤ 1, v ∈ Q,

where

Q = {v ∈ R2 : |v1| + |v2| ≤ 1}.
The set M is defined by the following system of
inequalities (Fig. 1):

(x1 − 1)2 + (x2 − 1)2 ≥ (
√

2)2, x1 ≥ 2,

(x1 + 1)2 + (x2 + 1)2 ≤ (3
√

2)2, x2 ≥ 1.

Set m1 = (2, 2)T and m2 = (−2, 2)T . Let us
denote by l the smaller arc of a circle by radius
2
√

2 with the center in the origin, joining the
points m1 and m2 (Fig. 1). It can be proved that
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the value function T (·; M) is finite on the set l∪M
only. The proof of the fact is omitted here.

Define the value ϕ(x) = 2T (x; M), x ∈ R2.
The property of u-stability of the value func-
tion T (·; M) implies that the function ϕ(·) also
possesses the u-stability property. Since ϕ∗(x) =
T ∗(x; M), x ∈ R2, the function ϕ∗(·) have the
v-stability property. Here, T ∗(·; M) and ϕ∗(·) are
upper closures of the functions T (·; M) and ϕ(·)
defined by (3), where Ω = R2.

Thus, the function ϕ(·) : R2 → [0,∞] satisfies
conditions (A1)–(A3), but ϕ(x) 6= T (x; M), x ∈
l \ {m1}. Condition (A4) is not fulfilled for ϕ(·).

6. PROOF OF THE THEOREM

The following lemmas will be used in the proof.

Lemma 2. Let a closed set M ⊂ Rn and a lower
semicontinuous function ϕ( · ) : Ω → [0,∞] satisfy
conditions (A1), (A2). Then

T (x0; M) ≤ ϕ(x0), x0 ∈ Ω.

Proof. If x0 ∈ M , then condition (A1) gives
ϕ(x0) = T (x0; M) = 0. If x0 ∈ Ω \ M and
ϕ(x0) = ∞, then T (x0; M) ≤ ∞ = ϕ(x0).

Choose x0 ∈ Ω \ M and set ϑ∗ = ϕ(x0) < ∞,
ϑ0 = T (x0; M). Let us prove that ϑ0 ≤ ϑ∗.

Define

W∗ = {(t, x) ∈ [0, ϑ∗] × Rn \ M : ϕ(x) ≤ ϑ∗ − t}.
Condition (A2) implies that W∗ is a u-stable
bridge (Krasovskii and Subbotin, 1988) in a prob-
lem of approaching a point (t, x(t)) with the set
[0, ϑ∗] × M . Since (0, x0) ∈ W∗, the first player
has (Krasovskii and Subbotin, 1988) a positional
strategy, which guarantees approaching the set M
in the time interval [0, ϑ∗].

The definition of the value function gives that for
any δ > 0 the second player has a positional strat-
egy, which guarantees avoidance a neighbourhood
of the set M in the time interval [0, ϑ0 − δ]. This
implies the inequality ϑ0 − δ < ϑ∗ for any δ > 0.
Thus, ϑ0 ≤ ϑ∗, which completes the proof.

Lemma 3. Let a closed set M ⊂ Rn and a lower
semicontinuous function ϕ( · ) : Ω → [0,∞] satisfy
conditions (A1), (A3). Besides, let int M 6= ∅.
Then ϕ∗(x0) ≤ T (x0; M

[ε]) for any x0 ∈ Rn and
ε ∈ (0, εM ].

Proof. Let x0 ∈ Rn and ϑ∗ = ϕ∗(x0) < ∞. Define

W ∗ = {(t, x) ∈ [0, ϑ∗] × Rn : ϕ∗(x) ≥ ϑ∗ − t}.

Condition (A3) implies that W ∗ is v-stable
set (Krasovskii and Subbotin, 1988). As (0, x0) ∈
W ∗, the second player has (Krasovskii and Sub-
botin, 1988) a positional strategy, which guaran-
tees keeping the system in the set W ∗ in the time
interval [0, ϑ∗]. Since

([0, ϑ∗] × M [ε]) ∩ W ∗ = ∅, ε ∈ (0, εM ],

the second player avoids a neighbourhood of the
set M [ε] in the time interval [0, ϑ∗]. But the first
player possesses a positional strategy, which leads
the system to the set M [ε] in the time interval
[0, T (x0; M

[ε])]. Thus, ϑ∗ < T (x0; M
[ε]) for any

ε ∈ (0, εM ].

Let x0 ∈ Rn and ϕ∗(x0) = ∞. Define

W∞ = [0,∞) × {x ∈ Rn : ϕ∗(x) = ∞}.
The set W∞ is closed and (0, x0) ∈ W∞. Condi-
tion (A3) implies that W∞ is a v-stable set. Since
ϕ∗(x) = 0 for any x ∈ int M , we have

([0,∞) × int M) ∩ W∞ = ∅.
Then ([0,∞) × M [ε]) ∩ W∞ = ∅ for any ε ∈
(0, εM ]. Consequently, for any ϑ > 0 the second
player has a positional strategy, which guarantees
avoidance a neighbourhood of the set M [ε] in the
time interval [0, ϑ]. So, T (x0; M

[ε]) = ∞ for all
ε ∈ (0, εM ]. The lemma is proved.

Lemma 4. Let closed sets Dτ ⊂ Rn, τ > 0, be
decreasing by inclusion as τ → +0 and ∩τ>0Dτ =
M . Then

lim
τ→+0

T (x;Dτ ) = T (x; M), x ∈ Rn. (4)

The proof of Lemma 4 is omitted.

Proof of the Theorem. The conclusion of the
Theorem is obviously true if M = Ω.

Let M 6= Ω. Condition (A1) gives the relation
W (0; M) = M ⊆ D(0). Condition (A2) of u-
stability implies absence of local minimum points
of the function ϕ(·), where it takes finite val-
ues, outside of the set M . Thus, the equality
W (0; M) = D(0) is valid.

Since M 6= Ω and D(0) = M , we have
supx∈Ω ϕ(x) > 0.

Choose τ ∈ (0, supx∈Ω ϕ(x)). Define the function
ϕτ (·) : Ω → [0,∞] as follows

ϕτ (x) =

{
ϕ(x) − τ, if x 6∈ D(τ),
0, if x ∈ D(τ).

Let us show that

T (x; D(τ)) = ϕτ (x), x ∈ Ω. (5)

For brevity let Dτ = D(τ). The set Dτ and the
lower semicontinuous function ϕτ ( · ) : Ω → [0,∞]
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satisfy conditions (A1)–(A4), where the notations
M and ϕ( · ) are replaced by Dτ and ϕτ (·).
Define

Θ = sup
x∈Ω

ϕτ (x), E(t) = {x ∈ Ω : ϕτ (x) ≤ t},

γ = sup{ϑ ∈ [0, Θ): W (t; Dτ ) = E(t) ∀ t ∈ [0, ϑ]}.

Let us remark, that for any ϑ ∈ [0, γ) and x ∈
E(ϑ) the equality ϕτ (x) = T (x; Dτ ) is valid. In
fact, set t = T (x; Dτ ). Since E(ϑ) = W (ϑ; Dτ ),
we have t ∈ [0, ϑ] and x ∈ W (t; Dτ ) = E(t). Due
to Lemma 2, the equation t ≤ ϕτ (x) is fulfilled.
On the other hand, the relation x ∈ E(t) implies
ϕτ (x) ≤ t. Thus, ϕτ (x) = T (x; Dτ ).

Consider the following cases.

Case 1: γ = ∞. For any ϑ ≥ 0 and x ∈ E(ϑ) we
have ϕτ (x) = T (x; Dτ ). If x ∈ Ω\∪ϑ≥0E(ϑ), then
taking into account the definition of γ we get x 6∈
∪ϑ≥0W (ϑ; Dτ ), and, therefore, T (x; Dτ ) = ∞. By
Lemma 2, the equality ϕτ (x) = ∞ is valid.

Case 2: γ < ∞ and γ = Θ. If x ∈ E(ϑ) for
a certain ϑ ∈ [0, γ), then the equation ϕτ (x) =
T (x; Dτ ) is valid.

Let x ∈ Ω \ ⋃
ϑ∈[0,γ) E(ϑ). Taking into account

Lemma 2, we have ϕτ (x) ≥ T (x; Dτ ) ≥ γ = Θ.
By definition of the value Θ, we get the equation
T (x; Dτ ) = γ. The property (Tu) of u-stability of
the value function implies the existence of such a
sequence {xk}∞1 , that tk = T (xk; Dτ ) < γ and
xk → x as k → ∞. Since W (tk; Dτ ) = E(tk) and
xk ∈ E(tk), the equation ϕτ (xk) = T (xk; Dτ ) is
true. Lemma 2 and lower semicontinuity of the
function ϕτ (·) give

γ = T (x; Dτ ) ≤ ϕτ (x) ≤ lim sup
k→∞

ϕτ (xk)

= lim sup
k→∞

T (xk; Dτ ) = lim sup
k→∞

tk ≤ γ.

Thus, the equality ϕτ (x) = T (x; Dτ) is valid for
all x ∈ Ω.

Case 3: γ ∈ [0, Θ). Let us introduce a notation:

D = E(γ), ϕ̃(x) =

{
ϕτ (x) − γ, if x 6∈ D,
0, if x ∈ D,

D(t) = {x ∈ Ω : ϕ̃(x) ≤ t}.
Observe that supx∈Ω ϕ̃(x) = Θ − γ.

The set D and the lower semicontinuous function
ϕ̃( · ) : Ω → [0,∞] satisfy conditions (A1)–(A3),
where the notations M and ϕ( · ) are replaced by
D and ϕ̃( · ). Taking into account condition (A4)
of the Theorem and the equality D = D(τ + γ),
where 0 < τ + γ < supx∈Ω ϕ(x), we find that the
set D is correctly compressible. Choose the value
ϑ > 0, satisfying conditions (C1) and (C2), in a
way that ϑ < Θ − γ.

Let us show that

W (t;D) = D(t), t ∈ (0, ϑ). (6)

Choose t ∈ (0, ϑ). Taking into account Lemma 2,
we have

D(t) ⊆ W (t;D) = int W (t;D).

Assume that W (t;D) \ D(t) 6= ∅. Since ϕ̃( · ) is
a lower semicontinuous function, D(t) is a closed
set. Thus, there exists x ∈ int W (t;D) \D(t). We
have T (x;D) ∈ (0, t].

If x ∈ Ω, then the relation x 6∈ D(t) implies
t < ϕ̃(x). So, t < ϕ̃∗(x), where ϕ̃∗(·) is the
upper closure of the function ϕ̃(·). If x 6∈ Ω, then
ϕ̃∗(x) = Θ − γ > t. Hence,

T (x;D) ≤ t < ϕ̃∗(x). (7)

On the other hand, Lemma 3 implies the inequal-
ity

ϕ̃∗(x) ≤ T (x;D[ε]), ε ∈ (0, εD].

From condition (C2) of correct compressibility of
the set D, it follows that

T (x;D) = lim
ε→+0

T (x;D[ε]).

Therefore, ϕ̃∗(x) ≤ T (x;D), that contradicts (7).
Hence, the property (6) is proved.

Taking into account that

W (t;D) = W (γ + t; Dτ ), D(t) = E(γ + t)

for any t ∈ (0, ϑ), we get W (t; Dτ ) = E(t) for any
t ∈ [0, γ + ϑ). This contradicts the definition of γ.
Consequently, Case 3 is impossible.

Thus, the relation (5) is proved.

Choose x∗ ∈ Ω \ M . For any rather small τ > 0
we have ϕτ (x∗) = ϕ(x∗)−τ . Due to Lemma 4 and
the equality (5), we get

T (x∗; M) = lim
τ→+0

T (x∗; D(τ)) = ϕ(x∗).

The last relation completes the proof.
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