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Abstract—For a problem of multilateration in the presense
of outliers, a Bayesian procedure is proposed for obtaining
an estimate of the aircraft unknown position and the signal
broadcast time. In the procedure, the estimate is obtained as
a sum of various options at which receivers the outliers were
occurred.

Index Terms—multilateratioin (MLAT), outliers, Bayes rule

I. INTRODUCTION

Multilateration is a type of a positioning system where
several receivers record times of arrival (TOA) of the signal
which is broadcasted by the transmitter. Knowning times of
arrival, the position of the transmitter and the broadcast time
can be estimated. The observation equations of this problem
are similar to those used for GPS. The main differences
of the multilateration problem in comparison with GPS are
worse geometrical observation conditions and greater number
of outliers in data. The main causes of the outliers are the
multipath of signal propagation and confusions of the signals
from different transmitters or broadcasting times.

The usual strategy against the outliers consists of determi-
nation of the outlier event and the “outlier” receivers using
the techniques of the statistical hypotheses testing (so called
the “fault detection and isolation”), then the exclusion of
the determined outliers [1]–[3]. However, in the case when
the number of observations is small, it is hardly possible to
determine the outlier event and the corresponding receiver
with a good confidence. There are four variables in the
multilateration problem; so, roughly speaking, the “small”
number of observations is when this number is less than eight.

Another approach is suggested wherein there is no exclusion
of measurements of any receiver. The work of the algorithm
was verified in the problem of determination of the aircraft
position. The simulation with real geometrical locations of the
receivers was performed.

II. MULTILATERATION PROBLEM

A task of multilateration is to determine the location r ∈ R3

of an aircraft by measuring the times ti of arrival (TOA) of the
aircraft signal to the receivers located at different geometric
positions ri ∈ R3. The number of receivers is equal to m.
It is essential that the signal broadcasting time t is unknown
and the measurements have random additive errors wi. For

convenience, choose the time scale such that the speed of light
is equal to one. Using the vector of unknown parameters

θ =

[
t
r

]
∈ R4

and the function of the model g(·), write the observation
equations for the measurements ti in the vector form

T = g(θ) + w , (1)

T =

 t1...
tm

 , g(θ) =

 t+ ‖r − r1‖
...

t+ ‖r − rm‖

 , w =

w1

...
wm

 .
Assume that there are outliers that additionally affect the

measurements. We will model them using random variables.
Namely, we introduce two random variables: ω is the set of
“erroneous” receivers where the outliers occurred (the number
of such receivers will be |ω|); µ is one-dimensional blunder
value. Outliers from different receivers will be considered
independent implementations of µ. Their joint vector by ω
receivers will be µω . Taking into account the outliers, the
observation equation takes the following form:

T = g(θ) +Hωµω + w , Hω =


0 · · · 0
1 · · · 0

...
0 · · · 1

 . (2)

In the matrix Hω ∈ Rm×|ω|, the number of columns coincides
with the number of the “erroneous” receivers, each column has
only one value “1” at place corresponding to one of the indices
included in ω.

The purpose of the multilateration problem is to obtain
an estimate θ̂ = θ̂(T ) of the vector θ using all the mea-
surements T . The estimate should work well in presence of
outliers. Minimization of the standard deviation E

{
‖θ̂ − θ‖2

}
is achieved in the case when the estimate is the conditional
expectation θ̂ = E{θ |T }, which in our case should take into
account outlier influence on the model.

III. BAYESIAN ALGORITHM

Let’s describe the expression for conditional expectation
in more detail considering possible combinations of receivers
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and events “at the receivers ω blunders occurred, while the
remaining receivers have not blunders”

E{θ |T } =
∑
ω∈Ω

E{θ |ω, T }P(ω |T ) . (3)

Here, Ω is the set of all possible variants of ω: Ω =
{∅, {1}, . . . , {m}, {1, 2}, . . . , {m− 1,m}, {1, 2, 3}, . . .}.

The conditional probability that the receivers of the set ω
are outliers is calculated by the Bayes rule

P(ω |T ) =
p (T |ω )P(ω)∑

ω′∈Ω

p (T |ω′ )P(ω′)
, (4)

where P(ω) is a priori probability of the event “outliers
occurred on set ω”, and p (T |ω ) is a conditional density for
T given ω (likelihood). The formula has the form

p (T |ω )

=

∫
θ∈Rn

∫
µω∈R|ω|

p (T |µω, θ, ω ) p (µω |ω ) p (θ) dθdµω

=

∫
θ∈Rn

∫
µω∈R|ω|

pw (T − g(θ)−Hωµω)

×
∏
ωi∈ω

pµ (µωi
) pθ(θ) dθdµω . (5)

Here, pw(·) is the density of w; pµ(·), pθ(θ) are a priori
densities of µ and θ. Similarly, the conditional expectation
in (3) can be detailed as

E{θ |ω, T } =

∫
θ∈Rn

θ
p (T |θ, ω ) p(θ)∫

θ′∈Rn

p (T |θ′, ω ) p(θ′)dθ′
dθ

=
1

p (T |ω )

∫
θ∈Rn

∫
µω∈R|ω|

θ p (T |µω, θ, ω ) p (µω |ω ) p(θ) dθdµω

=
1

p (T |ω )

∫
θ∈Rn

∫
µω∈R|ω|

θ pw (T − g(θ)−Hωµω)

×
∏
ωi∈ω

pµ (µωi) pθ(θ) dθdµω . (6)

Further calculations will be carried out under strong as-
sumptions about the nature of outliers and random errors. We
assume that the random errors are normally distributed with
zero expectation of wi ∼ N (0, σ2) and the standard deviation
σ the same for all receivers. We also consider µ ∼ N (0, σ2

µ).
The standard deviation σµ is assumed much larger than σ:
σ � σµ.

The distribution of θ is assumed to be degenerate. Tech-
nically, this is expressed in the substitution pθ(θ) = 1 in
integrals (5), (6). Although the function pθ(θ) ≡ 1 is not a
density function, and integral (5) is not a likelihood expression
of p (T |ω ) after substitution, this method corresponds to of
limit in expressions (4), (6) on the scale parameter ε → 0 in
the case of the density of the form pθ(θ) = ερ(εθ) (for any
given in advance “basic” density function ρ(θ)).

Under these assumptions, integrands in (5), (6) have the
form

p (T |µω, θ, ω ) p (µω |ω ) p(θ) =
1

(2πσ2)m/2
1

(2πσ2
µ)|ω|/2

× exp

{
− 1

2σ2
(T − g(θ)−Hωµω)

2 − 1

2σ2
µ

µ2
ω

}
. (7)

Integral (5) of expression (7) cannot be calculated analytically
due to the nonlinear character of g. To overcome this difficulty,
the easiest way is the following. The initial estimate θ∗ of θ
can be calculated by minimizing the least-squares functional
[4], [5]

J(θ) =
m∑
i=1

(ti − gi(θ))2
, θ∗ = argmin

θ
J(θ) . (8)

Further, a linear approximation to g(θ) in a neighbourhood of
θ∗ is used

g(θ) = θ∗ +
d

dθ
g(θ∗)(θ − θ∗) .

In terms of linear approximation, the integration becomes
easy. Introduce the notation

H =
d

dθ
g(θ), D =

(
HTH

)−1
, R = I −HDHT .

In (5), it is convenient to integrate first θ and then µ. After
integration we obtain

p (T |ω ) =
(2πσ2)n/2(2πσ2)|ω|/2

(2πσ2)m/2(2πσ2
µ)|ω|/2

|detD|1/2

|detRω|1/2
× (9)

exp

{
− 1

2σ2
(T − g(θ∗))

T
(
I −HωR

−1
ω Hω

T
)

(T − g(θ∗))

}
,

µ̃ω = E{µω|ω, T} = R−1
ω Hω

T(T − g(θ∗)) , (10)

θ̃ = E{θ|ω, T} = θ∗ −DHTHωR
−1
ω Hω

T(T − g(θ∗)) .

Here, Rω = Hω
TRHω + σ2/σ2

µI|ω|×|ω| is a block of the
matrix R, which corresponds to the index set ω with a small
regularization summand σ2/σ2

µI|ω|×|ω|.
The final estimate is constructed as follows:
1) For each possible ω, expression (9) determines the

likelihood of p (T |ω ).
2) Expression (4) determines the conditional probabilities

p (ω |T ).
3) Expression (10) determines the conditional expectation

of θ for each variant of ω.
4) The final estimate is calculated by formula (3)

E{θ |T } = θ∗− (11)

DHT

(∑
ω∈Ω

P(ω |T )HωR
−1
ω Hω

T

)
(T − g(θ∗)) .

IV. A COMPARISON WITH STANDARD METHODS AGAINST
OUTLIERS

In processing the GPS measurements, the common method
against outliers [2], [3] is as follows:

1) detection of the outlier event;
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2) isolation, i.e. the determination the receiver where the
outlier was;

3) exclusion of the outlier and parameter estimation without
it.

Since the mathematical formulation of the multilateration
problem (1), (2) basically repeats the formulation of the GPS
navigation problem, it would be natural to use the same
methods. However, due to the worst geometric conditions of
observation, and probably larger number of outliers, these
methods often do not work correctly.

Thus, the most difficult cases in outlier control are those
where the blunder is not so large to be noticeable but its impact
on the estimate is sufficiently significant. In the problem of
multilateration, a fairly small number m of measurements is
typical, and with a small number of measurements, outliers
are difficult to be detected.

Detection of an outlier event is usually carried out by
analyzing the value J(θ∗) of the functional J at the optimal
point [1]–[3]. The value J(θ∗) is random due to presence
of the random errors. If there are no outliers and equation
(1) is fulfilled, the value J(θ∗) has a chi-square distribution
χ2
m−4 with m − 4 degrees of freedom. In the case of the

outliers presence and equation (2), with fixed ω, µω , the value
J(θ∗) have a noncentral chi-square distribution χ2

µ̂,m−4 with
m − 4 degrees of freedom and the noncentrality parameter
µ̂ = (Hωµω)

T
RHωµω .

Fig. 1 shows the empirical cumulative distribution functions
of J(θ∗) for a small number of receivers m = 5. The blue line
corresponds to the empirical cumulative distribution function
J(θ∗) for the case without outliers. The red one is the same for
the outliers at one receiver, the blunder has fixed value of 300
m. The vertical green line marks the threshold above which
only 5% of the J(θ∗) values are found. Detection of outliers
usually is made by the threshold rules. For this situation, it
can be seen that the proposed threshold rule at the significance
level of 5% has a large number of missed events about 23%.

Detection of where exactly the outlier occurred is usually
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Fig. 1. Empirical cumulative distribution functions of J(θ∗) without outliers
(blue) and with outliers (red)

made in two ways. The first option is to analyze the residuals
of T − g(θ∗). The second one is connected with handling
subsets α of the receivers. For each subset, the least-squares
problem have to be solved again

Jα(θ) =
∑
i∈α

(ti − gi(θ))2
, θ∗α = argmin

θ
Jα(θ) ,

until the subset α∗ will be found satisfying the statistical “no
outliers” test (or, in the simple case, the subset α with minimal
Jα(θ∗α) can be taken).

In the case of a small number of receivers m, the statistical
test on the subset has less power at a given significance level
than the test on the full sample. As a result, the number of
errors increases when receivers with outliers are not actually
excluded from the solution, but the receivers that do not have
blunders are excluded.

The Bayesian method described above, instead of determi-
nation of the “erroneous” receivers, assigns to each receiver the
conditional probability P(ω |T ) of the outlier event. By this,
it is protected from such extreme events when the “erroneous”
receivers are determined incorrectly.

A test was conducted to simulate the accuracy of the
algorithms discussed above. A system of six receivers was
considered, the aircraft was at an altitude of 2000 m. For the
grid of specified horizontal positions of the aircraft, the times
of arrival was calculated with outliers in them. For each six
measurements {ti}6i=1 one has a blunder necessarily (for a
randomly selected receiver). The magnitude of the blunders
was equal to 300 m (or 1 µs) with a random sign.

The figures below show the lines of the level of horizontal
accuracy, i.e. the standard deviation of determining the hor-
izontal position of the aircraft in meters. Fig. 2 shows the
accuracy of the initial least-squares solution of (8). Fig. 3
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Fig. 2. Horizontal accuracy of the original least-squares solution
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Fig. 3. Horizontal accuracy of the solution based on exclusion of the
suggested outliers
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Fig. 4. Horizontal accuracy of the Bayesian algorithm

shows the accuracy of the algorithm based on [1], [3], which
works with subsets of receivers. As can be seen, the accuracy
of such an algorithm is even worse than the accuracy of
the original least-squares solution, where there is not any
operations against outliers. In Fig. 4, the accuracy of the
proposed Bayesian algorithm is shown. For this it is supposed
that P(ω = ∅) = 0.61, P(ω = {1}) = . . . = P(ω = {6}) =
0.065, σ = 30 m, σµ = 300 m. It should be noted that
the assumptions about the probability law of outliers in the
algorithm do not coincide with the assumptions used in the

data simulation. Nevertheless, a good accuracy of determining
the position of the aircraft has been obtained.
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