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Antagonistic linear differential games with a fixed instant of termination and a continuous terminal pay function are considered. 
The control action of the first (minimizing) player is assumed to be scalar and bounded in modulus. The vector control of the 
second player is restricted by a geometrical constraint. An assertion is proved concerning the sufficient condition and, when this 
is satisfied, the optimal negative feedback positional control of the first player can be specified using the switching surface which 
separates the space of the game into two parts, in each of which there is its own limit value of the control action. The proposed 
control procedure is stable with respect to inaccuracies in the numerical construction of the switching surface. © 2004 Elsevier 
Ltd. All rights reserved. \ 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  A N D  T H E  M A I N  R E S U L T  

Preliminary description of  the problem. Suppose a linear differential game with a fixed instant of termina- 
tion O is described by the relations 

~9(t) = B(])(t)u(t) + C(1)(t)v(t) 

y(t) ~ R", lu(t)l < ~t, 1)(t) e Q(I); ~,O)(y(a}) ) 
(1.1) 

We stipulate that the control action u(t) of the first player is scalar and bounded in modulus by the number 
> m (1) ~t O. We assu e that the set Q , which constraints the control action a)(t) of the second player, is 

convex compactum in a finite-dimensional space. Hence, B(1)(t) is a column-vector and c(t)(t) is a matrix 
of the corresponding dimensions. The functions B (1), C (t) are assumed to be piecewise-continuous. 

1) n i) Suppose 7 ( : R ~ R is a continuous pay function. The first player minimizes the value of ~ (y(~)) 
while the interests of the second player are the opposite. 

We will call the game (1.1) the initial game. The notation referring to it is given the superscript (1). 
We stipulate that the initial instants to belong to the interval T = [~1, O], where ~1 < ~- Suppose 
Z = T x R n is the space of the game. We call a measurable function of the time t ---) u(t) (t --+ ~)(t)), 
which satisfies the constraint l u(t) I -< P- (~)(t) e Q(1)) for any t, a permissible preset control u(') (~)(')) 
of the first (second) player. We will denote the set of all permissible preset controls ~(.) of the second 
player by LC). 

Following the well-known procedure [1], we will consider the arbitrary functions (t,x) ~ U(t, x), defined 
in the set Z with numerical values which are bounded in modulus by the number g, as the permissible 
positional strategies of the first player. We will denote by the symboly(1)(.; to, x0, U, A, a~(.)) the stepwise 
motion of system (1.1) from the position (to, x0), when the first player uses a strategy U in a discrete 
control scheme [1] with a step size A > 0, while a control v(') e L (1) is a realized for the second player. 

We put 

F(l)(to,  x 0, U, A) = sup 70 ) (y (1 ) (0 ;  to, Xo, U, A, v ( . ) ) )  
v(.) E L (~) 
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The quantity F(1)(t0, x0, U, A) has the meaning of a guarantee which offers the first player a strategy U 
for the initial position (to, x0) in the discrete control scheme with a step size A. The best guarantee for 
the first player in the case of the initial position (to, x0) is defined by the formula 

F(1)(t0, x0) = min lim FO)(t0, x 0, U, A) 
U A-~O 

where lim denotes an upper limit. It has been shown [1] that a minimum with respect to U is reached, 
that is, an optimal strategy exists. At the same time, a dependence of the optimal strategy of the first 
player on the initial position (to, x0) is not ruled out. 

It is well known [1, 2] that the best guaranteed result F(1)(t0, x0) is identical with the symmetrically 
determined best guaranteed result of the second player. The quantity F(1)(t0, x0) is therefore also called 
the value of the value function at the point (to, x0). 

It will be shown below that, in the case of a certain additional condition in game (1.1), a universal, 
optimal strategy U* of the first player exists which is stable with respect to errors in its numerical 
specification. 

Universality means that the strategy U* is optimal for all initial positions (to, x0) s Z. We stress that 
we are talking of universality in a "rigorous" sense: the strategies being considered are solely functions 
of the arguments t and x. In the class of strategies which additionally depend on a certain "accuracy 
parameter", the existence of optimal, universal strategies has been established earlier [3] for an extensive 
class of problems. 

The universal optimal strategy (t, x) ~ U*(t, x) will be determined using a "switching surface" which 
divides up the space of the game Z into two parts: on one side the control u takes the value -Ix and, on 
the other side, the value + g. In the switching surface itself, the optimal value of the control u can take 
any value from the interval [-IX, g]. 

The question of the existence of universal optimal strategies in differential games has been concisely 
discussed [1, p. 48] and became sharper after the appearance of the paper [4] in which an example of 
a game problem was cited where an universal optimal strategy does not exist. It has been shown [5, 6] 
that a universal optimal strategy of the first player exists in the case of linear differential games of the 
form of (1.1) with a convex pay function and that it can be specified using the switching surface. The 
stability of this strategy was based [7] on an assumption concerning the boundedness of the "velocity 
of rotation" of the vector B(1)(t). 

It has been established in [8, 9] that, if the set Q(1) is an interval (that is, the control action v is scalar) 
then a universal optimal strategy of the second (maximizing) player exists and it can also be specified 
using the switching surface. However, this strategy does not possess the property of stability. 

In this paper, the results obtained in [7] are reinforced: the condition of the convexity of the pay 
function is relaxed and the assumption concerning the boundedness of the "velocity of rotation" of the 
vector B(1)(t) is removed. As in [7], the following scheme of reasoning issued. Guided by computer 
syntheses, we replaced the initial differential game with a convenient approximating game for which 
we can construct a certain u-stable [1, 2] function or even the value function of the game. On processing 
this function, we obtain the switching surface. We now use this resulting switching surface in the initial 
differential game in order to specify the universal strategy of the first player. We estimate the guarantee 
of the first player which it ensures, using the universal strategy constructed. As a consequence, we obtain 
a result from this estimate which holds true for the universal, optimal, stable strategy in the game (1.1). 

We now make a remark concerning the description of the dynamics of a linear differential game in 
the form of (1.1). A special feature of this description is the fact that the phase variable does not enter 
into the right-hand side. Suppose a linear differential game with a fixed instant of termination 0 has 
the form 

~'(t) = A(t)y(t)  + B(t)u( t )  + C(t)v( t )  

y(t) e R m, [u(t)l <-I.t, v(t) e Q(1); 7(y(O)) 

We assume that the pay function Y is solely determined by the values of certain n coordinates, n _< m, 
of the phase vector at the instant of termination. Then, the transition to the form (1.1) is achieved [1, 
p. 160] using a standard transformation y(t) = Xn, re(O, t)y(t), where Xn, m(O, t) is an n x m matrix 
composed for the corresponding n rows of the fundamental Cauchy matrix for the system ~(t) = A(t)y(t). 
In this case 

B(l)(t) = Xn,  m(l~ , t)B(t),  C(1)(t) = Xn, m(O,t)C(t ), y(l)(y(O)) = T(y(O)) 
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Approximating game. Together with game (1.1), we consider a further differential game 

~(t) = B(Z)(t)u(t) + C(2)(t)v(t) 

y( t )  ~ e", lu(t)l <p-, v( t )  ~ Q(~-); y(2)(y(O)) 
(1.2) 

with a fixed instant of termination O. We shall interpret game (1.2) as an approximation of game (1.1), 
which is convenient for computer calculations. Herey(t)  is the phase vector, and the functions B (2) and 
C (2) are piecewise-continuous. The constraint on the scalar control action of the first player is the same 
as in game (1.1) and the set Q(2) is a compactum in a finite-dimensional space. We assume that the 
continuous pay function ,/(2) : R ~ -4 R satisfies the Lipschitz condition with a constant )~ and the condition 
y(2)(x) -4 oo when Ix[ -4 oo. The first player minimizes the value of ~2)(y(O)) and the second player 
maximizes it. 

Quantities belonging on the approximating game are indicated by the superscript (2). We determine 
the permissible preset controls u('), v(') of the first and second players in the same way as was done in 
the case of game (1.1). The set of all permissible preset controls v(') of the second player is denoted 
by L (2). 

We shall assume that a certain continuous u-stable function I/2) : Z -4 R with the boundary condition 

V(2)(O, X) = ~t(2)(X), X E R n 

is constructed within the framework of the approximating game (1.2). According to the well-known 
definition [1, 2], we say that the function V (2) is u-stable if, for any position (t,, x , )  ~ Z, for any t* 
(t,, 0] and for any ~(.) ~ L (2), a permissible preset control u(.) of the first player is found such that the 
inequality 

V(2)(t *, y(2)(t*)) -< V(2)(t., x , )  

is satisfied for the motiony(Z)(t) = y(Z)(t; t . ,  x. ,  u('), 1)(.)). 
We assume that the function j/2) satisfies the Lipschitz condition with a constant ~, with respect to the 

argument x uniformly with respect to t ~ T. If 1)(2) is the value function of the game (1.2), then the 
satisfaction of this property follows from the condition imposed on the function ~2). 

(3) n We introduce the function B : T -4 R which satisfies the Lipschitz condition with a constant 13. 
Interestingly, B (3) can be treated as a Lipschitz approximation to the functions B 0) and B (2). We use 
the following notation 

a = maxlB(3)(t)] 
t ~ T  

The concept of quasiconvexity of a scalar function is used below. As usual, this means the convexity 
of its level sets (Lebesgue sets). 

Condition A. For any t ~ T for which B(3)(t) ~ 0, the contraction of function l~2)(t, .) in any line in R n 
parallel to the vector B(3)(t) is a quasiconvex function. 

Remark. We consider a function which is a contraction for the function IA2)(t, .) in a certain line which is parallel 
to the vector B(3)(t). The condition which has been formulated implies the requirement of a non-rigorous 
monotonicity of this one-dimensional function along both sides of the point of its global minimum. 

Condition A is satisfied, in particular, if the function lA2)(t, .) is quasiconvex for any t ~ T. In the case 
when I A2) is the value function of the approximating game (1.2), it is sufficient to require that the pay 

2y, function 7 (2) is quasiconvex in order to ensure the quasiconvexity of the functions V ( (t, "), t E T. 

The switching surface. The multivaluedfunction U °. For (t, x) ~ Z, we put 

M(t, x) = {z E R": z = x + c~BO)(t), ~ ~ R} 

IfB(3)(t) g 0, then the set ,~(t, x) is a straight line which passes in the space R n through a pointx parallel 
to the vector B(3)(t). In the case when B(3)(t) = 0, the set ~(t ,  x) is degenerate and coincides with 
the point x. Without picking out the degenerate case separately, we shall always call the set ~(t ,  x) a 
straight line. 
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Suppose that 

°V(t,X) = rain V(2)(t,z), (t ,x) E Z 
z e s~(t,x) 

A minimum is attained since the function IA2)(t, .) is continuous and parts to infinity when Ix[ ~ oo. By 
virtue of Condition A, the set of points of the minimum is an interval. If B(a)(t) = 0, then ~V(t, x) = 
l'X2)(t, X), X ~ R n. 

Next, suppose that for all t E T 

I ' l ( t )  = { x e  R n :  V ( 2 ) ( t , x )  = °l/'(t,x)} 

l-I_(t) = {x ~ R n : x + ctB(a)(t) ~ Fi(t), k/IX > 0} 

H+(t) = {x ~ R n : x + 0~B(a)(t) ~ Fi(t), 'V'0~ < 0} 

The set H_(t), I-l+(t) are located in the space R n on different sides relative to the set H(t). It follows 
2) from condition A that, for any (t, x) ~ Z, the function 1/( (t, ") does not increase (does not decrease) in 

the direction of the vector B(3)(t) at the intersection of the straight line sg(t,x) with the set rl+(t), (l-I_(t)). 
We define the multivalued function 

in Z. 

{ -g} ,  x e rl_(t) 

u° ( t ,x )  = l { g  }, x ~ I I + ( t )  

L[-g, ix], x~  Fi(t) 

The function U°(t, .) takes limiting values from the interval [-g, ix] in the sets IL(t), Fi+(t) and 
"switches" from one limiting value to the other in the set H(t). The set 

FI = { ( t , x )  ~ Z : x ~ F i ( t ) }  

is closed, simply connected set which subdivides Z into two parts. Although the set H is not always a 
surface in the generally accepted sense, for clarity we shall nevertheless call it the switching surface of 
the control action of the first player. 

The  set  Fir(t). The  m u l t i v a l u e d  f u n c t i o n  U r, We continue to introduce the notation for formulating the 
basic result. 

Suppose r ___ 0. In the case when B(3)(t) ~ 0, we put 

B(a)(t ) } 
Hr(t) = x ~ R" : x = z +  IB(a)(t) I, z e rI(t), I~t --- r 

The set Hr(t) is a geometric r-expansion of the set Fi(t). The expansion occurs with the use of the vector 
B(3)(t).  If B(3)(t) = 0, we assume that Fir(t) = H(t) = / ~ .  

We introduce the sets 

Fl_~(t) = {x ~ R n : x + 0~B(3)(t) ~ Fir( t ) ,  Vt~ > 0} 

l-l~(t) = {x ~ R n : x + 0~B(3)(t) ~ IIr(t), VO~ _< 0} 

The set IY_(t) (II~(t)) is the part of the space R n which is located, relative to rIr(t), along the direction 
of (in the opposite direction to) the vector B(3)(t).  It is obvious that Fir(t) C II_(t), Fla.(t) C Fi+(t). When 
r = 0, we have Fir(t) = H(t), FI2(t) = Fi_(t), rI%(t) = rI+(t). 

We define the multivalued function in Z 

u r ( t ,  x )  = 

{-g} ,  x ~ rl_~(t) 

{ix}, x ~  n~(t)  

[ -g ,g ] ,  x ¢  Fi'(t) 
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Formulation of the basic result. For any instants t ,  and t* from the interval T, we put 

t* t* 

Z(t,, t*) = ~tItC(t)dt + Im(t)dt 
t ,  l ,  

It(t) = [B(1)(t) - B(3)(t)] + [B(2)(t)- B(3)(t)l 

m(t) = max I max l'C(')(t)q- max t'c(Z)(t)q 1 
l~ R", 11}< lt-q~ Qll) q~ Q(2) 

The quantity Z(t., t*) characterizes the difference in the functions B 0), B (2) and B (3) as well as the functions 
C (1) and C(~) and the sets QO) and Q(2) in an integral sense. A prime denotes transposition. 

Assuming that the initial positions of system (1.1) belong to a certain compact set K in the space of 
the game Z, we denote the compact set in R n, which determines from above the set of possible states 
of system (1.1) at the instant O, by the symbol F. It is assumed that 

lIT (') _ T(z)IIF = m a x l T ( l ' ( x ) _  y(2'(x)] 
x E F  

The following assertion will be proved next. 

Theorem. Suppose the conditions, including Condition A, imposed on systems (1.1) and (1.2), and also 
on the functions l A2) and B (3), are satisfied. Suppose r > 0, A > 0. Then, the estimate 

r(°(to, Xo, u, a) <_ v(z)(to, Xo) + A(to, r, A) + lit (')_ T( )IIF 
A(t0, r, A) = 2~L~/(2~I.tA + r)~bt(ag- to) + 4~.ffILA + ~.r+ ~,X(to, O) 

(1.3) 

holds for any strategy U of the first player such that U(t, x) • Ur(t, x), (t, x) • Z and any initial position 
(to, x0) • K. 

We will now give several explanations. The function I A2), which possesses the property of u-stability, is 
assumed to have been constructed within the framework of the approximating game. There is therefore 
a known value of lAe)(to, Xo) on the right-hand side of limit (1.3). The difference in the dynamics of the 
initial and the approximating games, as well as the difference in the function B (3) from the functions 
B (1) and B (2), are taken into account by the quantity X(t0, 0). The term I I ~1) _ ~(2)ii F characterizes the 
difference in the pay functions. The switching sets Fir(t), t • Tfor the multivalued function U r are defined 
in terms of constructions which are implemented using the functions V (2) and B (3). 

On the whole, the right-hand side of relation (1.3) estimates the guarantee of the first player in the 
game (1.1) when it uses an arbitrary, single-valued positional strategy U, which is a sample from the 
multivalued function U r. 

Since l-I(t) C I-Ir(t), t • T, then, outside the sets 

l'I r = {(t, x) ~ Z : x • Fir(t)} 

0 the strategy U is identical with the function U which is specified using the surface FI. Suppose U ° is a 
0 certain single-valued sample of the multivalued function U .  From what has been said above, we obtain 

that the action of the strategy U °, which is performed with errors in the set II r, is also estimated by the 
right-hand side of relation (1.3). It is therefore possible to speak of the stability of the strategy U ° with 
respect to inaccuracies in the construction of the surface 17. 

Assuming that the approximate game is identical with the initial game and that B (3) = B 0), then 

X(t0, O) = 0, IlT"'- (Z)ll  = 0 

Furthermore, suppose the value function F 0) of the initial game is used as the u-stable function IA 2) 
and that Condition A is satisfied. By virtue of estimate (1.3), we obtain 

F°)(t0, x 0, U °, A) < r¢l)(to, x0) + 2)~/(2ol.tA + r )~ t (O  - to) + 4;Z~I.tA + ;~r 
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Consequently, if the function B 0) and, also, the pay function ~ )  satis~ the Lipschitz condition ~0)(x) 
oo as Ix ] ~ 0% and if Condition A is satisfied for the value function F (1) in the pair with the function 

B 0) and the switching surface H is constructed on the basis of the function F (1), then the strategy U ° 
can be taken as the universal, stable, optimal strategy U* in the game (1.1). 

Suppose 

2. A U X I L I A R Y  A S S E R T I O N S  

d(X, Y) = maxminlx-y[ 
x ~  X y ~  Y 

is the Hausdorff divergence of the set X from the set Y for compact sets X and Y in R n. We put 

t* 

G i)t" t*) = k..) [c( i ) ( t )u( t )dt ,  i = 1, 2 
o(.) ~ L(3t; 

The sets Gq)(t,, t*) are convex compacta. The limit 

t* 

d(G(ol)(t,, , (2) ~m(t)dt  (2.1) t ), G v ( t , ,  t * ) )  < 

t ,  

holds. 
The permissibility set of system (1.2) at the instant of time t for an initial state x,  at the instant of 

time t ,  and in the case of an exhaustive search for all of the permissible preset controls u('), v(') in the 
interval It,, t] is denoted by the symbol G(2)(t; t , ,  x,) .  We put 

G(2)(t; t , ,  x , )  = G~2)(t; t , ,  x , )  + B( 2 ( t -  t,)~l.t) 

Here, B(r) is a sphere of radius r in R ". 
For t ~ T and c ~ R, we put 

. ( 2 )  W(cZ)(t) = { x ~  R n: V(z)(t ,x)<-c},  W c = { ( t , x ) ~ Z : x ~  W(c2)(t)} 

Lemma 1. Suppose (t,, x , )  ~ Z, 8 > 0, t ,  + 6 _< O and thaty(r)(-) is the motion of system (1.1), by 
virtue of the permissible preset controls u('), v('), which, at the instant of time t, ,  emerges from the 
point x, .  The estimate 

°l/'(t, + 6, yO*)(t, + 8)) -< V(2)(t,, x , )  + ~,[~t8 2 + ~,Z(t,, t ,  + ~i) (2.2) 

then holds. 

Proof. Using a control v(') ~ L 0) specified in the condition of the lemma, we define the point 

t,+d$ 

g = S C(I)(t)°(t)dt 
t ,  

in the set G(~a)(t,, t, + 5). 
Suppose g is the closest point of the set G(~Z/(t,, t, + 5) to it. We choose ~(.) s L (2) such that 

t ,+~ 

= ~ C(2)(t)~)(t) dt 
t ,  

Using the u-stability of the function I A2), we obtain a ~3(-) along the direction 5(.) such that the inclusion 

y(Z*)(t, + 5) E W~2,)(t, + 5) (c ,  : V(2)(t,, x , ) )  (2.3) 
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is satisfied in the case of the motiony(2*)(t) = y(2*)(t; t , ,x , ,  ~(.), 5(.)) which emerges from the pointx, at the instant 
of time t, .  

We now use the notation 

J1 = 

Then 

We have 

t ,+8 t ,+8  

J1 = I BO)(t)u(t)dt- I B(2)(t)u(t)dt 
I.  t .  

t .+fi t .+8  

J2 = I C(I)(t)O(tldt- I C(2)(t)g-)(t)dt 
t ,  t ,  

y(l*)(t,  + t~)-y(2*)( t ,  +5)  = Jl +J2  (2.4) 

t ,+8  t ,+8 

I (B(l)(t)-B(3)(t))u(t)dt- I (B(Z)(t)-B(3)(t))fi(t)dt+ 
t ,  t ,  

t,+q5 t ,+8  

I (B(3)(t)-B(3)(t,+8))(u(t)-~t(t))dt+B(3)(t,+8) I (u(t)-~(t))dt 
¢. ¢. 

(2.5) 

We denote the operator for the orthogonal projection of the space R n onto the subspace, which is orthogonal 
to the vector B(3)(t, + 5), by the symbol r~. 

Bearing in mind the fact that the controls u(t) and u(t) are bounded in modulus by the number g, the function 
B (3) satisfies the Lipschitz condition with a constant 13 and that 7zB(3)(t, + 8) = 0, from relation (2.5) we obtain 

Finally, we obtain 

t,+~$ 

f l¢(t)dt + ~g 82 
t, 

Taking into account relations (2.6) and (2.1), we have 

t ,+~ 

[rtJ2[ = [/l;g - rr~l < Ig - ~l --- .[ m(t)dt 
t, 

Hence 

(l*) * t~y ( t ,  + 5) -- ~y(2 )(t• + 8)1 ----- ~ 2  + ~(t:te ' t ,  + ~) (2.7) 

Suppose x is the point on the line .~(t, + 8, y(l*) (t, + 5)) which is closest to the set W (2) (t, + ~5). It follows c. 
from inclusion (2.3) and the definition of the operator n that 

(2) ~ _ [Tt~ - ~y(2*)(t, + (2*) d({~}, Wc, O, +~))) < 5)1 = [gy('*)(t, +8) -gy  ( t ,  + 8)1 

- < (1") V(2)(t, + 8, x) - c ,  + ~.lny ( t ,  + 8) - gy(2*)(t, + 8)[ = 

= V(2)(t,, x , )  + ~.llryO*)(t, + ~)) -/ry(2*)(t ,  + 8) I 

Taking inequality (2.7) into account, we conclude that the required inequality follows from the fact that 

~[/'(t, + 8, yO*)(t, + 8))  -< V(2)(t,  + 8, .r) 

J2 = g - g  (2.6) 
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L e m m a  2. Suppose (t, ,  x , )  e Z, 8 > 0, t ,  + 8 < O and that  y(l*)(') is the motion of  system (1.1) by 
virtue of the constant  control and a certain ~(') e L (1) which emerges from the point x ,  at the instant 
of t ime t , .  We assume that  

The estimate 

G(2)(t,  + ~5; t , ,  x , )  c I-I+(t, + 5) (G(2)(t,  + 5; t . ,  x . )  c I I_( t ,  + 5)) 

V(2)(t, + ~i, y(l*)(t ,  + 5)) _< V(2)(t,, x , )  + ~ . [ ~ 2  + )t,Z(t,, t ,  + 8) (2.8) 

then holds. 

Proof. As in the initial part of the proof of Lemma 1, we choose a control 5(.) e L (2) using the specified 
v(.) ~ L (1). Next, using the u-stability of the function IA 2), we select t~(.) such that the motiony (2)(% which arises 
by virtue of tT(.), 5(% satisfies the conditions 

y(2*)(t,) = x , ,  y(2*)(t, + 15) ~ W(c])(t, + 15) (c ,  = V(2)(t,,x,)) (2.9) 

We put 

We will show that 

Consider the case 

t ,+8 

e = y(2*)(t, + 15) + B(3)(t, + 15) I (u( t )  - ~ ( t ) )d t  

t, 

V(2)(t, + 15, Z) -< V(2)(t, + 15, y(2*)(t, + 15)) (2.10) 

u(t )  - g, G(2)(t, + 8; t , ,  x , )  c II+(t, + 8) 

By virtue of the last imbedding, we obtain 

y(2*)(t, + 8) e l-I+(t, + 5), e e 1-I+(t, + 15) (2.11) 

Since u(t)  > ~t (t), t e [t,, t ,  + 15], the vectors 2 -y(2*)(t, + 15) and B(3)(t, + 15) are codirected. On taking Condition 
A into account, we derive inequality (2.10) from this. 

In the case when 

u(t) =-~£, G(2)(t, + 15; t , ,  x , )  C I I ( t ,  + 8) 

inequality (2.10) is proved in a similar manner, only now it is necessary to use relations which differ form (2.11) 
by the replacement of the plus sign by a minus sign, and the inequality u(t)  < ~t(t), t ~ [t., t .  + 15]. 

Since the right-hand side of inequality (2.10) does not exceed c., we obtain the inclusion 2 e W!2. ) (t, + 15). 
Therefore 

d({y(l*)(,, + 15)}, W(c2,)(t, + 15)) -< [y('*)(t, + 15)-e1 

Using the definition of the vector ~ in equality (2.4), we have 

y0*)(t, + 8) - ~ = J1 + J2 -  B(3)(t, + 15) I (u( t )  - f i ( t ) )dt  
t, 

Taking into account equalities (2.5) and (2.6), the Lipschitz condition for the function B (3), the rule for selecting 
the control aS(.) and inequality (2.1), we obtain 

]yO*)(t, + 8) - el < I]g15 2 + Z(t , ,  t ,  + 15) 

The required inequality (2.8) follows from the fact that 

V(2)(t, + 15, y(1 *)(t, + 15)) -< V(2)(t, + 15, e) + ~,ly (l*)(t, + 8) - el 

g(2)(t, + 15, Z) -< V(2)(t,, x , )  
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L e m m a  3. Suppose (i, ~) ~ Z, i ~ (i, O] and that  y(l*)(') is the mot ion  of  system (1.1) by virtue of  a 
constant control  u(t) = ~ (u(t) -- - g )  and a certain v( ' )  E, L 0) which emerges  from the point  ~ at a certain 
instant of  t ime i. We assume tha ty  0 )(t) e YI+(t) ( y 0 ) ( t )  s Yi_(t)) for  all t e [i, i]. 

The  limit 

V(2)(?, y(l *)(~)) _< V(2)(~, .~) + ~,~(i, t) (2.12) 

then holds. 

Proof. We divide the interval [i, ~] into instants tl, t2 . . . . .  ts, (tl = i, t~ = ~) with a step 8, such that the relation 

(l*)tt ,~,~ G(2)(tk+l, tk, Y t.kj,  CH+(tk+l) (G(2)(tk+l, tk, y(l*)(tk))CII (tk+l)) 

is satisfied for any k = 1, 2 . . . .  , s - 1. This can be done on the basis of the assumption concerning the location of 
y(V)(t) relative to YI(t). By virtue of Lemma 2, we have the estimate 

V(Z)(tk + 1, Y(l*)(tk + 1)) -< V(2)(tk, YCl*)(tk)) + ~'~g 8z + )~X(tk, tk + ~) 

On applying it successively for k = 1, 2 . . . . .  s - 1, we prove an equality which differs form (2.2) in that there is a 
term )q398(~, i) on the right-hand side. On taking the limit when 8 --+ 0, we obtain the limit (2.12). 

L e m m a  4. Suppose (i, Y) s Z,  i E (i, O] and thaty(l*)(.) is the mot ion  of  system (1.1), by virtue of  the 
permissible preset  controls u(.), a)(.), which emerges f rom the pointY at the instant of  t ime i. The  limit 

g(2)(~, y(l *)(~)) < g(2)(~, ~) "t- 2)~gc(~ - ~) + ~)~(i, ~) (2.13) 

then  holds. 

Proof. We assume that (t,, x . )  s Z, 8 > 0, t. + 8 -< O. Copying the initial part of the proof of Lemma 1, using 
the specified ~(') e L 0~, we select the extremal control fi(.) ~ L (2). We then select ~(.) such that the motiony(2*)(.), 
which arises by virtue of ~(-), ~('), satisfies conditions (2.9). 

On taking account of equalities (2.4)-(2.6), the Lipschitz conditions for the function B (3), the inequality 
IB(3)(t. + 8)[ < cy, the rule for selecting the control ~(.) and inequality (2.1), we obtain 

]y(l*)(t, + 8) - y(2*)(t, + 5)] < ~g8 2 + 2~g8 + Z(t , ,  t ,  + 5) 

By virtue of the relations 

V(2)(t, + 5, y(l *)(t, + 5)) -< V(2)(t, + 5, y(2*)(t, + 5)) + )~]y(1 *)(t, + 5) - y(Z*)(t, + 8)t 

V(2)(t, + 8, y(2*)(t, + 8)) -< v(Z)(t,, x , )  

we derive the inequality 

V(2)(/, + 8, y(l *)(t, + 8)) < V(2)(t,, x , )  + ~ , ~ 8  2 + 2)~C~Ia8 + XX(t,, t ,  + 8) (2.14) 

from this. 
As in the proof of Lemma 3, subdividing the interval [i, i] with a step 8, we use the estimate (2.14) at each step 

and, taking the limit as 8 ~ 0, we obtain the limit (2.13). 

3. P R O O F  O F  T H E  T H E O R E M  

We fix a number  r _  0 and consider the motiony(1)(-) of  system (1.1) f rom a position (to, Xo) ~ K, to < 0 
by virtue of  a certain strategy U C U of  the first player with a step A of  the discrete control  system and 
a certain v(-) s L 0). 

In order  to describe the change in the funct ion l/2) along the mot ion  y0)(.) in the interval [t. ,  t*], 
we int roduce the nota t ion 

Var(V (2), [ t . ,  t*])  = V(2)(t *, yO)( t*))  - VC2)(t., yCl)( t . ) )  



592 V.S. Patsko 

1. Suppose 13 > O, (y > O. We put 

h = ~/(2o'txA + r)/(13It) (3.1) 

(A) Along the motiony(1)('), we separate out the "loops" which are associated with entry into the sets 
Hr(t). We also determine the free intervals: 

On moving from to to O, we find the first instant of time t, when y(1)(t) ~ Fir(t). We call this instant 
the instant of the start of the first loop and  we denote it by tl. Next, we note the instant i l  of the 
termination of the first loop as the last instant t in the interval [tl, tl + h] m T at whichy(a)(t) ~ Hr(t). 
The instant il,  in particular, can be identical to tl. 

We take the first instant t ~ [ta + h, 0], wheny(1)(t) ~ IT(t) as the instant, t2, of the start of the second 
loop. We then note the instant t 2 o f  the termination of the second loop as the last instant t in the interval 
[t2, t 2 + h] ~ T, when y(1)(t) c i f( t) .  

Continuing this process, we obtain the set of loops in [to, 0]. 
We now remove the domain of the intervals of the loops which have been constructed from [to, O] 

and we obtain an ordered set of segments. We call each of them a free interval which may be degenerate, 
that is, consist of a single point. 

If there are no loops in [to, O], then we assume that [to, O] is the free interval. 

(B) Suppose [% rl] is a certain free interval. We will show that an increment of the function lZ z) in it 
is described by the inequality 

Varf(V (2), [Z, T~]) -< 2~ogA + 3,Z(x, rl) (3.2) 

The subscript f emphasizes that the change in the function I/(2) is calculated in the free interval. 
A certain control u(') is realized along the motion y(1)(;). We call the value u(t) a "correct" value if 

u(t) = ~t (u(t) = -It)wheny(1)(t) c l]+(t) (y(1)(t) ~1 rI_(t)). 
In the domain of the free interval, the motiony ~ )(') goes along one side of the set FI' and, therefore, 

along one side of the surface 17. Hence, when A _< q - % the control u(t) is correct in [z + A, rl] and 
arbitrary, perhaps, only in [% "c + A]. By virtue of Lemma 3, we obtain 

Var(V (2), [z + A, q]) <~Z(X + A, 1]) 

and, by virtue of Lemma 4, 

Var(V (2), [% z + A]) < 2~,t.tcyA + ~,X(z, 'r + A) 

On summing the last two inequalities, we arrive at the limit (3.2). 
If A > 11 - % we apply Lemma 4 to the whole of the interval [% rl]. We again obtain the limit (3.2). 

(C) We shall say that [% rl] is an interval of the form E1 if it consists of a certain loop [ti, {i] and a free 
interval adjacent to the right of it. We shall call an interval [% 11] of the form E1 with the additional 
condition "c + h __ ~1 an interval of the form E 2. 

We will now evaluate the increment of the function V (2) along the motiony(1)(") in an interval of the 
form El. 

We consider the interval of the loop [ti, ii]. Applying Lemma i when 8 = {i - ti, we have 

~[/'('ti, y(l)('~i)) _< V(2) ( ti, y (1) ( ti) ) + ~,~jit(~ti_ ti) 2 + ~,~( ti ' ~ti ) 

Since i i -- t i <-- h ,  the second term on the right-hand side can be replaced by ) ~ g h ( {  i - ti). 
On taking account of the inequality 

V(2)(ti, y(1)(ti)) -< ~lf(ti, Y t i)) + )~r 

we arrive at the relation 

Var(V (2), [ ti, ti]) ~ X13gh(-ti-ti)  + ).r + )~Z(ti, ti) (3.3) 
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In the free interval [ i i ,  1]], we have inequality (3.2) when x = t i  and, when this is combined with 
inequality (3.3), taking account of the inequality t i  - -  ti < 1"1 - "t;, we obtain 

- ( 2 )  Vat I (V , [% 1] ]) < ~,l]~th(1] - x) + 2~,o~tA + kr  + ~,Z('C, 1]) (3.4) 

The subscript 1 emphasizes that the calculation of the increment in the function 1/(2) takes place in an 
interval of the form Ev 

We will now evaluate the increment Var2 of the function 1/(2) along the motiony(1)(.) in an interval 
of the form E2. Since, 1] - x > h in this case, the inequality 

2;Zo~tA + Xr <__ ;Z~31ah(1] - ~) 

follows from relation (3.1). 
On invoking inequality (3.4), we obtain 

- ( 2 )  Var2(V , [% 1]]) < 2X[$1.th(1] - x) + ~,X(x, 1]) (3.5) 

(D) We will now consider the interval [to, O] and represent it as being composed of the first free interval 
[to, tl], a finite number of intervals of the form E2, which go one after the other from the instant tl to 
a certain instant t* (their total interval is [tl, t*]), and the remaining interval [t*, O] of the form Ev On 
successively applying limits (3.2), (3.5) and (3.4), we have 

Var(V (2), [to, 0])  = Varf(V (2), [t 0, tl]) + Var(V (2), [t i, t*]) + 

+ Varl(V (2), [t*, 0]) < 2~,o~tA + 2~,l~lxh(t* - tl) + 

+ ~,[3~h(O - t*) + 2~,OiLtA + ~,r + ~,Z(t0, O) -< 

<_ 2~,~lxh(O - t o) + 4~,o~tA + ~,r + ~,g(to, O) 

Substituting h using formula (3.1), we obtain 

Var(V (2), [t 0, O]) -< A(t 0, r, A) (3.6) 

2. Suppose [5 = 0, 6 _> 0. On moving from to to O, we find the first instant t wheny0)(t) • l-Ir(t). This is 
denoted by q. Suppose i is the last instant in [to, O] wheny0)(t) • Hr(t). 
We have 

y(1)(t)~ Fir(t), t •  [t o , t  l ) w ( t , O ]  

On the basis of Lemma 3 and 4 (as when deriving inequality (3.2)), we obtain 

Var(V (2), [to, q])  < 2kt~tA + ~,Z(t0, tl) (3.7) 

Var(V (z), [~, 0])  < 2~,a~tA + kZ(~, O) 

for the intervals [to, q]^and [i, O]. 
For the interval [tl, t], using Lemma i with 13 = 0, we have 

oV(~, yO)(~)) < V(2)(q, yO)(t l)  ) + ~,Z(tl ' ~) 

(3.8) 

and, hence, on taking account of the inequality 

V(2)(}, y(1)([)) < ol/.(~ ' y(l)(~)) + ~r 

we arrive at the limit 

Var(V (2), [tl, ~]) < ~.r + ~.Z(tl, ~) (3.9) 






