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Caaiig 1

«Mamuna /Iybuncay — o4eHb HOILy/AgpHAs MOJIe/Ib B COBPEMEHHOM MaTeMaTu4ecKoil Teopun yupasjienus. B
cTyaendeckoii saboparopun B Texunone, ocHoBareseM KoTopoi steasercs T.Shima, 60% nay4ubix Tem, BbiBe-
IMEeHHBIX Ha MJIAHIIETAX, CBI3aHbI C 9TON MOIEThIO.

Hamra menp — wmcciaegoBanne TPEXMEPHBIX MHOYKECTB JOCTHXKHUMOCTH JJd MarmuHbl /lyOmaca. Mbl KpaTko
CKazkeM Tak:ke 00 WX IpUMEHEeHHH B 3aJadax HaOIIOIeHHs ¢ HEIIOJHOM HHOpMAaIue.

Tepmun «reachable set» u «attainability sety> — oaHo u TO Ke.
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The Dubins car is a very popular model in the nowadays control theory. For example, in the Technion
student laboratory (founded by T.Shima) about 60% of scientific topics on the posters are concerned with this
model.

Our aim is to investigate three-dimensional reachable sets for Dubins car. We will also discuss very shortly
the application of the reachable sets to observation problem with incomplete information.

The terms “reachable set” and “attainability set” are the same.



Nonlinear control system of car motion (Dubins Car)

Markov, A. A. (1889). Some examples of the solution of

a special kind of problem on greatest and least quantities,
Soobscenija Charkovskogo matematiceskogo obscestva,
Vol. 2-1 (No. 5,6), 250-276 (in Russian).

Hberomko npmmbpops phmesia ocofaro
polia 3ajays 0 HaWOONPIIAXD M HaHMEHb-
IIAX'h BEIMYAHAXD.

A. A, Ispxonu.

Isaacs, R. (1951). Games of pursuit, Scientific report
of the RAND Corporation, Santa Monica.

&

Homicidal Chauffeur .
Problem  AMERICAN

"JOURNAL OF MATHEMATICS

Volume LXXIX, Number 3 JULY, 1957, pp 497-515

ON CURVES OF MINIMAL LENGTH WITH A CONSTRAINT ON
AVERAGE CURVATURE, AND WITH PRESCRIBED INITIAL
AND TERMINAL POSITIONS AND TANGENTS.*

________________________________________________

By L. B. Dusins.

Final position —_
Initial position * Received April 28, 1956; revised January 3, 1957.
P2
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Hemuoro ucropun. B 1889 r. A.A. MapkoB omy0/imKoBas CTaThio ¢ (GOPMYJIMPOBKAMA U PEHICHUSIMEU YETHIPEX
MOJIEJIBHBIX 33129 00 ONTHMAJIbHBIX KPUBBIX ¢ OIPAHUIEHHBIM DPAANYCOM KPHUBU3HBI. 3a7a49u ObLIN CBSI3aHBI C
HPOEKTUPOBAHUEM ZKEJIE3HBIX JIOPOT.

P. Aiizekc nepBbIM CTaJ HA3BIBATH «aBTOMOOUIEM» MAaTEMATHIECKHH 00BEKT, KOTOPBIil JBUKETCI ¢ OrPAHU-
denneM Ha paauyc nosopora (1951).

B 1957 r. B MaTeMaTuuecKOM XKypHaJIe BhINLIA cTaThd J1. Jlydunca, B KOTOpoit OH T0Ka3aJ, 9TO CpeIu KPUBBIX
C OrpaHMYEHHBIM PAJIMYCOM KPUBH3HbBI, 33JaHHBIMU HAYAJIbHBIM U KOHEYHBIM IOJIOKEHUSIMHU, a TaKKe 3a/1aH-
HBIMH HAIPaBJEHUSIMH BBIXOJIA U BXOJa KPUBas HAaUMEHbINEH JIMHLI COCTOUT U3 He 6ojiee TPEX CTAaHIAPTHBIX
Y9IaCTKOB. VIMu gBALI0OTCA: TOBOPOT ¢ MUHUMAJIBHBIM PAJIMYCOM B OJHY CTOPOHY, IOBOPOT ¢ MUHUMAJIBHBIM pa-
JIAYCOM B JIPYTYIO CTOPOHY, MPSIMOJIMHEHHBIH yaacToK. [IyGuHe yKas3an Bce BapuaHThl (MX 6), KOTOPBIMEH MOYKHO
OTPAHWYHUTHCS TIPYU UCCTETOBAHUU KPATUYANTITIX KPUBBIX.
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Several history hints. In 1889, A.A. Markov published a paper with formulations and solutions of four model
problems on optimal curves with bounded radius of curvature. These problems were connected with projecting
the railroads.

In 1951, R. Isaacs was the first one who called the “car” a mathematical object that moves with a constraint
on the radius of turn.

In 1957, a paper by L. Dubins was published in a mathematical journal. He proved that, in the bunch of
curves with the constrained radius of turn for given initial and terminal geometric states and also with given
directions of output and enter, a curve of the minimal length consists of not more than three standard parts.
These are: the turn with the minimal radius to one side, the turn with the minimal radius to the other side,
and the linear-direction part. Dubins had pointed out all six variants, which are sufficient to take into account
in investigations of the shortest curves.



Dubins Car: 3D-Reachable set at instant t;

X = cosp, U =-1 (symmetric case) y V2
i _— ol _ (asymmetric case)
y = sing, g e(-1,0) femmene e 0
(b = Uu, U = 0 (one-sided case) / X
"""""""""""""""""""""""""""""""" W id —00,
Ue [ul, U2]. Uy € (O, 1) (strictly one-sided case) € consider @ E( * +OO)

p-sections of reachable set

Uy = 1, Uy isaparameterof problem

Reachable set at instant t;: X(ts)
Gt )=U | y(tr)
" o(t)

ble set up to instant t;:
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Jlunamuka Mamunbl Jybunca cojgepKuT reoMerpudeckre KOOPJAUHATHL T, Y U YroJl (0 HAIIPABJIEHUs BEKTOPaA
JIMHEHHOW CKOPOCTH. 3HAYEHUE U] B 3AMNCH OTPDAHHYEHHS HA YIPABIEHUE U CINTAeM mapaMerpoMm 3ajgadn. Mbr
BBIJIEISIeM deThipe caydas. Ecam u; = —1, 370 cummerpudnbiii caydait. Ecam uy € (—1,0), To 370 Hecummer-
puuHBI ciaydait. B Tperbem caydae u; = 0. B aTom ciaydae MOXKHO MOBOpadmBaTh TOJIBKO B OJIHY CTODOHY.
Yerpepreiit caydait u; € (0,1) — 910 ciydait cTPOro OJHOCTOPOHHETO MOBOPOTA. 376Ch JBUKEHUE MO MPSIMOi
3aIpPeIIeHo.

Hac unrepecyer rpexmepHoe MHOXKeCTBO moctuzkumoctu G(tp) «B moments tr. Bo uszbexanune myTanumb
HOMYEPKHEM, YTO MbI Pa3/JnYaeM MHOYKECTBA JIOCTHXKUMOCTH «B MOMEHT» W «K MOMeHTY». B mannoii padbore
pedb MOIJIET TOJIBKO O MHOXKECTBE JIOCTU2KUMOCTH B MOMEHT.

OTMeTHM, 9TO MBI PACCMATPHBAEM YIOJ ( Ha MPOMEKYTKe (—00,4+00), T.e. HE OTOXKIECTBISIEM YIJIBI <TI0
MOJIYTIO» 277.
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Dynamics of Dubins car comprises geometric coordinates x, y, and the angle ¢ of the linear velocity vector.
The value u; in the description of the constraint on the control u is the problem parameter. We distinguish four
cases. If u; = —1, then it is a symmetric case. If u; € (—1,0), then it is an asymmetric case. In the third one,
we have u; = 0. Here, the turn is permitted only to one side. The fourth case u; € (0,1) has strictly one-sided
turn, when a motion along a straight line is prohibited.

We are interested in the three-dimensional reachable set G(t;) “at instant” ¢;. To avoid misunderstanding,
we underline the distinctions between the reachable sets “at instant” and “up to instant”. In our work, we
speak only about the reachable sets “at instant”.

Note also that we consider the angle ¢ in the interval (—oo,+00), i.e., we do not identify the angles by
“modulo” 2.



Reachable sets in projection onto a geometric plane,
symmetric case

—2
t; =1.57 tr =2z

SIAM J. ConTROL
Vol. 13, No. 1, January 1975

PLANE MOTION OF A PARTICLE
SUBJECT TO CURVATURE CONSTRAINTS*

E. J. COCKAYNE anp G. W. C. HALLf}

Abstract. A particle P moves in the plane with constant speed and subject to an upper bound
on the curvature of its path. This paper studies the classes of trajectories by which P can reach a given

point in a given direction and obtains, for all ¢, the set R(f) of all possible positions for P at time t,
thus extending the results of several recent authors.

Yu.l.Berdyshev

Nelineinye zadachi posledovatel’nogo upravleniya i ikh prilozhenie.
[Nonlinear Problems in Sequential Control and Their Application|.

Ekaterinburg: IMM UB RAS, 2015, 193 p.
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Yro u3BECTHO O MHOXKECTBE JOCTHKMMOCTH B MOMEHT U3 pabor japyrux asropos? To/ibkKo onucanue JBy-
MEPHBIX MHOXKECTB JOCTUKUMOCTH B ILIOCKOCTH M€OMETPUYCCKHUX KOODAUHAT JIJId CUMMETPUYHOIO CJLydas. DTO
pabora E.J. Cockayne u G.W.C. Hall, 1975. B namem ucTuTyTe Takoe onucanue ncrnoab3osana FO. M. Bepapimes
IPUMEHUTEJbHO K PA3IMIHBIM 3a/1a9aM.
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What is known about reachable sets “at instant” from works of other authors? It is only a description of
two-dimensional reachable sets in the plane of the geometric coordinates for the symmetric case that appeared
in the work by E.J.Cockayne and G.W.C. Hall in 1975. At our Institute, such a description was applied to
various problems by Yu.l. Berdyshev.



Pontryagin Maximum Principle

It isknown [ Lee, E.B., Markus, L. ] that controls that carry a system onto
the reachable set boundary satisfy the Pontryagin Maximum Principle (PMP).

X = COSe, | o y v
1y = sing, Dynamlcd-escrlptlon

U of Dubins car )
S in normalized coordinates X

/

ue [Ul, 1]

Let u™(:) besome admissible control and .
4 0,

(X(), Y'O), ()" be the corresponding motion -
of Dubins car on the interval [ty,ts]. / 1 V2=
Differential equations for the adjoint system :
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EcrecrBenno, 4To 1mpu UCC/IeJ0BAHUN MHOYKECTB JIOCTHKUMOCTH Mbl ounupaemMcs Ha Ilpunnun Makcumyma
[Mourpgaruna (ITMIT). Moxkuo ckazarh, aro [IMIT — 310 cBOiicTBO, KOTOPBIM 0GIAKAET YIPABJIIEMOE JBHKEHNE,
Be/yIllee Ha TPAHUIY MHOXKeCTBa JOCTH:KHMOCTH. COOTBETCTBYyIOIEe yTBep:KiaeHne ecth B KHure F.BLee u
L. Markus.

ConpsizkeHHast cCHCTeMa B HCCJIeIyeMOil 3a/1a4e HecJIOKHAsg U UMeeT BU/JI, MOKA3aHHBIN Ha CcJaije.
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It is natural that in our investigation of reachable sets, we are based on the Pontryagin Maximum Principle
(PMP). It could be said that the PMP is the property that a controlled motion possesses if it leads onto the
boundary of the reachable set. The corresponding statement is in the book by E.B Lee and L. Markus.

In the problem under investigation, the conjugated system is simple and has the form shown in the slide.



Pontryagin Maximum Principle Condition

The PMP means that a nonzero solution (w1 (), wa (), w3() )" of the adjoint system exists,
for which almost everywhere (a.e.) on the interval [tg, tf ] the following condition is satisfied :

Wi () cos@(t) + () coser(t) +yitu't) = max | wit)cose(t) +i(t)coser(t) +yit)u |
uelu,, 1]

= yitu) = max [yt ]|, ae teft,t,]
udu,, 1]

The functions v (-) and w5 (-) are constant.

If y7 =0and > =0, then w3 (-) = const = 0 on the interval [tg, tf ].
Therefore, wehave Uf(t)=U, or UTt)=1 ae.
Let atleast one of the numbers 7 () and w>(-) be non - zero.

Using the equations of dynamics and adjoint system equations,
one can write

w3(t) =y y'(t) —wax'(t) +C.
Therefore, w4 (t) =0 iff the point (x*(t), y'(t))" of the geometric
position at the instant t obeys the straight line equation
* * Switch line
y1y—wox+C=0.




Caaiing 6

3uech npejcrasiena dpopmysta i [IMIILL [Tokazan s cuMMeTpuaHOro cjydasi BApUAHT IKCTPEMAIbHO-
ro jBuzkenusd. Kaxjaomy JBukenuio, yaosiaerBopsomemy [IMII u umeromemy aBa wiu 6osiee nepekaiodeHmii,
COOTBETCTBYET CBOSI MPSIMAsT MEPEKTIOIEHUSI.
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Here, the PMP formula is presented. A variant of an extreme motion is shown for the symmetric case. Each
movement satisfying the PMP and having two or more switchings corresponds to its own switch line.



Types of motions (trajectories (X*(-), y*()))

ty y * y

Y =0 s =0

symmetric case
(U =-1)

asymmetric case
(-1<uy<0)

(U = 0)

(0 < u1 < 1) E...........;
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Ha srom caaiize g KazkI0ro u3 4eTbipPex CJIydaeB HOKa3aHbl HEKOTOPbIE BAPUAHTHI JIBUXKEHUH, YI0BIETBO-
pstioniux [TMIT.
Ho IIMII — 3T0 TOIBKO HAYAJIO UCCIIEIOBAHUS MHOYKECTB JOCTHKUMOCTH.
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On this slide, some variants of motion are shown for each of the mentioned cases; these motions satisfy the
PMP.
But the PMP is only the first step of investigation of the reachable sets.



Reachable set G(t;) for the symmetric case

4y-1,0,-1 2)-1,0, 1 ts =1.57

SH5L-L1 3)

2) 6)-1,1,-1

Patsko V.S., Pyatko S.G., Fedotov A.A. (2003) Three-dimensional reachability set for a nonlinear
control system. Journal of Computer and Systems Sciences International. Vol. 42, No. 3, pp. 320-328

EYTYTTYEIYY
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JlJ1st CHUMMETPUYHOrO CJLydasi Mbl YCTAHOBUJIM, YTO B JIOOYIO TOYKY HA I'DAHUIE MHOXKECTBA JOCTUKUMOCTH
G(tf) BeméT aBUKeHHe, KOTOPOE HMeeT He Hosiee ABYX Hepeksodenuii. [Ipu 3ToM BCIO rpaHuily MOXKHO Pa30HTh
Ha 6 gacreii (KJI€TOK), KazxKAas CO CBOMM XapaKTePOM SKCTPeMAaJbHBIX JBH:KeHuil. Hampumep, Kiaerke 2 coor-
BETCTBYeT II0CJeJ0BAaTeNIbHOCTD yupabiaeHuit —1, 0, +1. T.e. uMmeeTca nepsblil IPOMeXKYTOK C yIIpaBJjeHHeM —1,
3aTeM UIET NPAMOJMHERHOe JIBUXKEHHEe ¢ yIpaBiaeHueM v = (0, Ha TpeThbeM IIPOMEKYTKe YIIpaBjIeHre paBHO +1.
B kmerke 5 mopsamnok ympasaennii +1, —1, +1. YkKa3aHHble IMecTh BAapHMaHTOB TaKHWe Ke, KaK B 3HAMEHHUTOM
Teopeme [lybunca.

ToHKUME JHHASME Ha CJAaiijie MOKa3aHbl CeUeHHsI MHOXKECTBA TOCTHKUMOCTH 0 YTJIOBOil KoopauHaTe ((p-ce-
IeHUS ).
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For the symmetric case, we had found that a motion that leads to any point on the boundary of the reachable
set G(t7) has not more than two switches. Under this, the whole boundary can be divided into six parts (cells),
and each of them has its own character of extreme motions. For example, the sequence of controls —1, 0, 41
corresponds to cell 2. So, there exists the first time interval with the control —1; further, the linear-direction
motion goes with the control © = 0; in the third time interval, the control is equal to +1. But in cell 5, the
control sequence is +1, —1, +1. The shown six variants of controls are the same as in the famous Dubins
theorem.

On the slide, the thin lines mark the reachable set sections by the angular coordinate (p-sections).



Evolution of reachable set in the symmetric case
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Taxkyro KapTUHKY Pa3sBUTUS MHOXKECTBA JIOCTUKUMOCTH C POCTOM BPEMEHU Mbl IIOKA3bIBAJIM HA PA3JIUYHBIX
koHpepennusax. OUeHb MOX0XKEe HA PA3BUTHE MAHIUPS YIUTKH.
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Such a picture of developing the reachable set in time has been shown at various Conferences. It is rather
similar to growth of shell on a snail.



Reachable sets with ¢ computed by modulo 2x
In the symmetric case
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Eciiu cunrarb, 4T0 yros ¢ npoCUYUTBIBAETCS 110 MOJLYJIIO 27, TO N300parKeHusl CTAHOBATCH MAJIONOHITHBIMU.
3/1eCh MBI BHIUM MHOXKECTBA, JOCTHKUMOCTH [JIsI TPEX MOMEHTOB BpeMeHHU. B CujIy CJI0KHOCTH KOH(DUTY PAIHii,
HOYTH HUKTO, KPOME HAC, U HE 3AHUMAETCS TPEXMEPHBIMU MHOYKECTBAMU JIOCTHXKUMOCTH JI1sT MaImunbl /lyounca.
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If the angle ¢ is calculated by modulo 27, the pictures become difficult for comprehension. Here, we see
reachable sets for three instants. Due to these complicated configurations, almost nobody (except us) deals with
the three-dimensional reachable sets for Dubins car.



Reachable sets in the asymmetric case

ue[-0.25, 1]

tf =6

4) -0.25, 0, -0.25 2)-0.25,0, 1

Fedotov A. A., Patsko V. S., Turova V. L. (2011) Reachable sets for simple models of car motion.
Ed.by A.V. Topalov. Rijeka: InTech Open Access Publisher, pp. 147-172 11
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Tax BbIIJIAJAT TpexXMepHble MHO2KeCTBa JOCTU2KUMOCTU B HECUMMETPUYHOM CJIyYae.
ZLHH CUMMETPHUYHOI'O 1 HECUMMETPDUYIHOT'O CJIYYa€B Y HaC IIOKa HET aHAJUTUYECKOI'O OIIMCAaHMNA gp—cequHﬁ.

Slide 11

Here, three-dimensional reachable sets are shown for the asymmetric case.
Till now, we have no analytical description of the ¢-sections for the symmetric and asymmetric cases.



One-sided case u,;=0
(it is allowed to move in a straight line)

Two variants of controls carrying Convexity of ¢-sections
the motion onto the boundary

We have a description of the ¢-sections of the reachable set that actually
represents either a circular segment (for ¢ <27) or an entire circle (for ¢ >2x).



Caaiig 12

Hns caydas uy = 0 aHAJIMTUYECKOE ONMUCAHUE Q-CEUCHUHN MOJIYUeHO. 3/eCh KaxKJoe p-cedenue Jinbo Kpyr,
b0 Kpyropoii cermenT. Takum odpazom, npu u; = 0 @-cedenusd ABIAIOTCA BBITYKJIBIMU. YCTAHOBJICHO, YTO TPU
UCCJICJIOBAHUH JIBUYKEHU, BEAYIIUX HA IPAHUILY, MOYKHO OTPAHUYHUTHCS JIBYMS MOCJEI0BATEILHOCTAME yIIPAB-
nennit. A umenno, +1, 0, +1 u 0, +1, 0.
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For the case u; = 0, an analytical description of the (p-sections is obtained. Here, each ¢-section is either a
circle or a circular segment. Thus, under u; = 0, the (p-sections are convex. It was found that in investigation
of motions leading onto the boundary, it is sufficient to deal with only two sequences of the control; which are
+1, 0, +1 and 0, +1, 0.



Strictly one-sided case u,>O0.

Types of motions which lead onto the boundary

0 Motions with constant (in time) control :
u=u; Oor u=u,

(two extreme points of reachable set)

1 Motions BS:

2 Motions BB:

3 Motions SB:

4 Motions SS:

start with control u = u,
and finish with control u = u, ;

start with control u = u,
and finish with controlu = u, ;

start with control u = u,
and finish with control u = u, ;

Example of SB-type motion

start with control u = u,
and finish with control u = u, ;
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Hamr woBbIfl pe3y/ibrar 1MOC/eHero BpeMeHn COCTOUT B QHAJMTUYECKOM ONUCAHUU Q-CEYCHUH Jijisd CJIydast
CTPOTO OJHOCTOPOHHErO MoBOpOoTa. Jlokazana cTporas BHIIYKJIOCTH p-cedeHuil. [Ipu sTom rpanuma jgob0ro o-
CeYeHUsI COCTOUT U3 He D0JIee IeM YeThIPEX TJIAIKAX JIyT.

JIBmkenusa tuna SB — 9To jiBUXKEHHs, B KOTOPBIX Ha HEPBOM HPOMEXKYTKe JefcTByeT yrpabjieHue u = 1
(TpaekTOpHsI Ha MJIOCKOCTH TeOMETPHIECKHX KOOPIHHAT MPEJICTABIsIeT cOBOM AyTy MAJOro paanyca), a B KOHIIE
IIPOMEKYTKA BPEMEHH JIeHCTBYeT yrnpaBjieHue 1y (peaausyercs jyra OOJbIIOro paanyca). Mekiay HAYaIbHBIM
M KOHEYHBIM Y9aCTKAMU UAET YepeJoBaHne JAyr OOJBIIOr0 U MAJoro pajuyca (HEKOTOpOe KOJIMIECTBO ITHKJIOB).

Ananorunanbiii cMbIca uMmeroT aBuzkenns tuna BS, BB u SS.
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Our new recent result is in obtaining an analytical description of the @-sections for the case of strictly
one-sided turn. The strict convexity of the (-sections is proved. Under this, the boundary of any ¢-section
comprises not more than four smooth arcs.

Motions of type SB are those, in which the control © = 1 acts in the first time interval. The corresponding
trajectory in the plane of the geometric coordinates is an arc of the small radius. But at the final time interval,
the control u; acts and the arc of the large (big) radius is implemented. Between the initial and final time
intervals, the sequence of arcs of the large and small radius appears (several cycles).

The motions of types BS, BB, and SS have some similar interpretations.



Strictly one-sided case u;>0 .
Variants of ¢-sections

SS BB SS BB
4 arcs with
SB 1 BS[[SB 2 Bs|{sB 3 Bs||sB 4 Bs smooth connection
BB SS SS BB
SS SS SS BB
3 arcs with
SB BS|(SB BS smooth connection
SB 5 BS|lsB 6 Bs 7 8
SS BB BB BB
X 2 arcs with
smooth connection
B g :
or with

(cp isé(;nilrtiple)

nonsmooth connection

BB BB
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Ha stom ciiaitjie 1epeduciienbl Bce BO3MOXKHBIE BAPUAHTHI (p-CEYEHUN JIjid ¢Jlydas CTPOro OJIHOCTOPOHHEIO
noBopota. Beero mmeem 11 BapuanTos. SB — 310 ayra Ha rpaHuile @-cedeHus, Ky1a NIPpUX0OIaT ABUKeHns Tuna SB.
Ana/mMTHYIeCcKOe OMMCaHNe TPAHUIIBI (P-CEUeHU yIKe He TaKOoe MPOCToe, Kak mpu u; = (), HO OHO Oy YeHO.
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On this slide, all possible variants of the ¢-sections are presented for the case of the strictly one-sided turn.
There are 11 variants. Here, SB is an arc on the @-section boundary, where SB-type motions come. The
analytical descriptions of the ¢-sections are not so simple as for the case u; = 0; but it has been obtained.



Reachable sets for the case u,;>0
(it Is not allowed to move in a straight line)

Examples for u;=0.5, u,=1

=6r

=107

/%sectu>\

®-
coloring

1)
A\
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3/1eChb MOKAa3aHbl TPEXMEPHBIE MHOXKECTBA JOCTUKUMOCTH JIjI CJIydasi CTPOTO OJHOCTOPOHHErO MTOBOPOTA.
OauuM w TeM Ke MBETOM pPa3MeYeHbl YIaCTKU TPAHUIBI, COJEPIKAIINe OJMH W TOT Ke THI JyTH Ha TPAHU-
e @-cedenuit. Becero mmeem mectr BapuanToB. /lyru BB u SS moryT BXoauTh B (o-cedeHHe KarxKaasi B JIBYX
CTaHIAPTHBIX BapUAHTAX, KOTOPBIe OTJIUIAIOTCS YHCJIOM MPOMEKYTOYHBIX ITUKJIOB B 3aIMCH COOTBETCTBYONIUX
SKCTpeMaJbHbIX ABuzkenuit. Jlyru SB u BS npu kaxkaom ¢ 3a/1a10Tcs e IMHCTBEHHBIM 00Pa30M.
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Here, three-dimensional reachable sets are shown for the case of the strictly one-sided turn. Those parts
of the boundary that have the same type of the arcs on the boundary of the ¢-sections are marked by the
same color. There are only six variants. The arcs BB and SS can be included in a ¢-section, each in some two
standard variants, which differ by the number of intermediate cycles in description of the extreme motions. The
arcs SB and BS for each ¢ are given by the only way.



Pontryagin maximum principle, ¢-sections of the reachable set,
and controls leading onto the boundary

Pontryagin @-sections Controls leading
maximum principle of the reachable set onto the boundary

up=-1
symmetric case
Only necessary

giti Non-convex
Lo conaition Non-uniqueness
Uy e ('_’ ) in the class of
asymmetric case piecewise constant
controls
Ul =0
one -sided case CE
Necessary and
sufficient condition UlrieTEmees
up(0,2) in thg class of
strictly Strict convex

piecewise constant

one -sided case controls
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Ecrb onpejiesiénnas 3aBUCUMOCTb MeXKJy XapakrepoMm @-cedenuit u cpoiicrsamu [IMII. B cummerpuunom
n necummerpudioM caydaax [IMIT — Toabko HeobxomuMmoe yc/jaioBHE MMepeBo/ia HA I'PAHUILY MHOZKECTBA JOCTHU-
KUMOCTH. B 3THX ciydasax p-cedeHusi, BOOOIIE rOBOPs, He SABJISIOTCH BBIMYKJIBIMEU. B caydasx OJlHOCTOPOHHETO
U CTPOTO ONHOCTOPOHHeTO moBOopoToB [IMII — HeoOxoamMoe m JocTaTOvYHOE yCJIOBHE MEPEBO/A HA TPAHUILY.
3/1ech p-cevdeHUs SBJAIOTCS BBITYKJIBIMEH. Bojiee TOTO, B cIydae cTPOTO OJHOCTOPOHHETO MOBOPOTA (p-CEUEHUS
IPEJCTABIAIOT OO0 CTPOTO BBHIMYKJIbIE MHOXKECTBA. JTOMY (DAKTY COOTBETCTBYET €TMHCTBEHHOCTD JIBUKEHUI,
BEJIYIIUX B KaXKJIYIO TOYKY IDAHUIIDI.

Slide 16

There exists certain dependence between the character of the p-sections and the PMP properties. In the
symmetric and asymmetric cases, the PMP is only necessary condition for transfer onto the boundary of the
reachable set. Generally speaking, the ¢-sections are not convex here. But in the cases of the one-sided and
strictly one-sided turns, the PMP is the necessary and sufficient condition for transfer onto the boundary. Here,
the ¢-sections are convex. Moreover, in the case of the strictly one-sided turn, the (p-sections are strictly convex
sets. This fact corresponds to the uniqueness of motions leading to each point on the boundary.



Reachable sets in the projection onto a geometric plane

tf =257

) fhasiis — dcctt B
__(éﬁl. - = tf =1.57

up=-1 Up=-0.5 U =0 h=+05 .
symmetric case asymmetric case one -sided case strictly one -sided case P17

.
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Ha sTom citaiijie jiuist KazK/ 010 U3 9eThIPEX CJIYYaeB OKa3aHbl HPOEKINK MHOYKECTB JJOCTUZKUMOCTH Ha, 11JI0C-
KOCTH TeOMEeTPHIECKIX KOOP/IMHAT.

Slide 17

On this slide, the projections of reachable sets onto the plane of the geometric coordinates are shown for
each of the mentioned four cases.



Transformation of information sets

Forecast set

—/; at instant t*
T ( by virtue
of the system
dynamics )

Uncertainty set
Information set of a measurement Information set

at instant t, at instant t* at instant t*
Information set at a current instant is a totality of all phase states
consistent with description of the dynamics, constraints on measurement errors,
and history of the observation process.

Terms equivalent to the term “information set” are
“feasible set”, “membership set’, “likelihood set”.

The approach is often called the “set membership estimation” or
“‘unknown but bounded error description (UBB approach)”
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[Tepeitgém K BO3MOKHOMY HPUMEHEHHUIO TPEXMEPHBIX MHOYKECTB JOCTHKMUMOCTH B 33/1a9aX HAOJIIOMCHUS C
Hero,1Ho# nadopmarueii. [Tycrs Mbl HAOMIOMAEM 32 ABUKEHIEM 00beKTa ¢ AMHAMUKOM Marmuabr J/lyOnaca. 3ame-
PBI FTEOMETPUIECKOTO TOIOKEHIS TOCTYMAKT B INCKPETHBIE MOMEHTHI BpEMEHH. 3aMepbl HETOUHbBIE, HO H3BECTHBI
OrpaHuveHus Ha ommOKY u3MepeHuil. KaxKaplil 3aMep T0CTaBIsieT HAM «MHOYKECTBO HeolpeenenHoctuy H(t).
OHO uMeeT ompejiesieHHYI0 (OPMY Ha TLIOCKOCTH X, Y U IMUJIUHIPUIHO MO KOOPJAWHATE (0, €CJIH 9Ta KOOPJAMHATA
HE 3aMepseTcs.

Undopmannonnoe MaozkecTBO (1) €cTh COBOKYIHOCTH BCEX TPEXMEPHBIX (Da30BBIX COCTOSTHUI, COBMECTHBIX €
ucropueii mporecca Habmoaenns. Mves nadopmarmontoe MaOKecTBO [ (t,) B HEKOTODBI MOMEHT t,, MbI CTPOUM
TPEXMEpPHOe MHOYKECTBO poruo3a G(t*) Ha MomeHT t*, Korjga npuaér cuaenytoruii 3amep. Muoxectso G(t*) ecTb
MHOYKECTBO JOCTHKUMOCTH, HO TOJIBKO HE U3 TOYKH, & U3 TPEXMEPHOro HadaiabHOro muoxkecrsa I(t,). Hosoe
nndopmanmonnoe MuoxKecTso I (t*) ecth nepecedenue muoxkects G(t*) u H(t*).

3/1eCh BBINTACAHBI BAPUAHTHI CYIIECTBYIONMEH TEPMUHOIOTUN.
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Now, let us move to a possible application of three-dimensional reachable sets to problems of observation
with incomplete information. Let us observe an object motion with the dynamics of Dubins car. Measurements
of geometric positions are provided at some discrete instants. The measurements are inexact, but the bounds
of errors are known. Each measurement gives an “uncertainty set” H(t). The set has some concrete form in the
plane x, y and is cylindrical on the coordinate ¢ if this coordinate is not measured.

The information set () is the totality of all three-dimensional phase states compatible with the observation
history. Having the information set I(¢.) at some instant ¢, we build the forecast three-dimensional set G(t*)
for the instant ¢*, when the next measurement comes. The set G(t*) is the reachable set not from some initial
point, but from the initial three-dimensional set I(t,). The new information set I(¢*) is the intersection of the
sets G(t*) and H(t*).

Here, some variants of now existing terminology are written out.



Intersection of an approximating forecast set
with a measurement uncertainty set

H(t*) Y 4

Convexity of (0-sections allows to construct fast procedures for
intersection
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MuoxkectBo H () HeoUpe e IEHHOCTH 3aMepa eCTECTBEHHO IPEIIOJAraTh By KJIbIM. Ec/iu Obl -ceuenus: MHO-
skecTBa nporuosa G(t) ObLIN BBRIIYKJIBIMHA, 3TO CYIECTBEHHO 001erduI0 Obl IPOIeAyPy HepecedeHus.
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The uncertainty set H(t) of each measurement is naturally regarded to be convex. If the y-sections of the
forecast set G(t) were convex, then it would essentially simplify the intersection procedure.



Approximation from above for the reachable set

(at the instant T = 27)

y — "
¢\£/X Estimate from above

EYTYTTYEIYY
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Hamu pazpaborana upouejiypa OBbIIYKJIEHUs @-cedeHuil MHozxecTBa 1poruosa G(t). Ilpu srom «ucrun-
Hble» HEBBIYKJIbIE (-CedeHNs] He W3BECTHBI. TeM He MeHee, Mbl CTPOHM allPOKCHMHUpYIOIiee MHOKecTBO G(1),
(p-CedeHUs KOTOPOTO SBJILIOTCS OBBINYKJIEHUEM UCTUHHBIX (p-cedenwuit. B pesysbrare mogydaeM «3KOHOMHYIO
cBepxy» oneHky G(t) HCTHHHOrO MHOXKECTBA MPOTHO3A.

3/1eCh OBBIIYKJICHHUE (p-CeUeHHN TTOKAZAHO JJIsT OJHOTOYEYHOTO HAYAJILHOTO MHOXKECTBA.
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We have elaborated a special procedure for the convexification of the ¢-sections of the forecast set G(t).
Under this, the “true” non-convex @p-sections are unknown. Nevertheless, we build an approximating set G(t),
which has p-sections that are convex hulls of the true ¢-sections. As a result, we obtain an “economic from
above” estimation G(t) of the true forecast set.

Here, such a convexification ¢-sections of is shown for a one-point initial set.



Motion of an information set, example 1

t=20 sec
t=0 sec : t=32 sec

Structure of the information set at t = 20 sec:
Before the measurement (at the left) and after (at the right)
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Ha stom ciiaiijie nokazano jpukenne uH(MOPMAIMOHHOIO MHOXKecTBa. HMOpMaIMOHHOE MHOXKECTBO ITPE/I-
CTaBJIEHO B BUjie (o-cedenwuii. [lycTh B HAYAIBHBIN MOMEHT MBI HMEEM BCErO OJHO (-cedenue. Cremyonuit 3amep
npuxoauT B MoMenT t = 20 c. /o aToro momenTa mH(pOPMAIMOHHOE MHOYXKeCTBO pacTéT. OHO COBIAIAET C TEKY-
MMAM aITPOKCUMHUPYIONNM MHOXKECTBOM HPOTHO3a W COCTOUT W3 BBIMYKJBIX (p-cedeHnil. MHOXKeCcTBO MPOTHO3A,
nocTpoerHoe Ha MOMeHT 20 ¢, mepeceKaeM ¢ MHOYXKECTBOM HeolpeJdeéHHOCTH. JemaeM 3TO MyTéM mHepecedeHus
COOTBETCTBYIONINX (-cedenuii. Jlamree Tekyriee nHdOPMAITMOHHOE MHOXKECTBO CHOBA PacTéT. Pe3koe cyxKenune ero
MPOUCXOAUT B MOMEHT ¢ = 32 ¢, KOTjia MPUXOAUT O9epeTHON 3aMep.
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On this slide, a motion of an information set is shown. The set is represented as a collection of its yp-sections.
Let us consider the case when we have only one y-section at the initial instant. So, we assume that the initial
angle is known. The measurement comes at the instant ¢ = 20 sec. Till this instant, the information set grows. It
coincides with the current approximating forecast set and consists of convex p-sections. The forecast set, which
is built for the instant 20 sec, is intersected with the obtained uncertainty set. We perform this by intersection
of the corresponding ¢-sections. Further, the current information set grows again. Its sharp narrowing takes
place at the instant ¢ = 32sec, when the next measurement comes.



Motion of an information set, example 2

uncertainty sets: t=0, 20, 40, 60 sec

No initial
angular
coordinate
information
is available

I=5sec 1=12sec | X

Case with the ¢-sections approximation by rectangles
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[aBHOe oTjindme OT HPeJIblIYINero cjiaaijia B TOM, 4TO 3/1€Ch IIPU OBBIILYKJIEHUU (P-CeYEHUN Mbl UCIIOJIb30BaJIN
TOJILKO YeThIpe HalpaBJIeHHsI BJOJIb U IPOTHB oceii x, y. Hauambubiii yror ¢ He u3secren. Ha unrepsase (0, 20) ¢
n3mepennii Het. MudopmanmorHoe MHOKECTBO pacTér. Caemayronme 3aMepbl MponcxoaaT B MmomenTs 20, 40, 60 c.
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The main difference from the previous slide is in the fact that here, for convexification of the -sections,
we used only four directions forth and back along the x, y axes. There are no measurements in the interval
(0,20) sec. The information set grows. The next measurements come at the instants 20, 40, and 60 sec.
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JIureparypa, cBa3anHas ¢ UCIOJIb30BanueM mojenu Jlybunca, orpomua. Ha ciaitjie ykazanbl Jidiib HEKOTO-
poie aBTOpbI. Teopus mHMOPMANMOHHBIX MHOYKECTB B 3HAYUTE/IHHON cTemenn pa3subaiach B Coserckom Coroze,
HO He TOJIbKO. B HiKHell yacTu ciaifijia yKa3anbl JiBe 1ocje/IHue paboThl aBTOPOB 0K/ 1a, CBI3aHHbBIE C UCC/Ie-
JIOBAHUEM MHOZKECTB JIOCTUKUMOCTH Jijid Maiuibl lybumca.
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The literature related to the Dubins model is huge. On the slide, we listed only some of the authors. The
information set theory was seriously developed in the USSR and not only there. At the bottom of the slide, two
our recent works are mentioned, which are concerned with the reachable sets for Dubins car.



