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Antony Merz and His Works
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Abstract The paper is devoted to the memory of Antony Willits Merz who
solved the homicidal chauffeur problem and was very active in differential
games in the 1970s and 1980s. A description of his main works, together with
his biography, is presented.
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1 Introduction

The first report [Isaacs, 1951] by R. Isaacs on differential games was published
by the RAND Corporation (Santa Monica, USA) in 1951. Already at this
time Isaacs formulated the homicidal chauffeur problem. In this problem, a
“car” moving in the plane pursues a “pedestrian” and strives to capture him
in a given neighborhood of his own state as soon as possible. The dynamics
of the car motion, along with the constant magnitude of the linear velocity
and the prescribed range of possible turn rates, are described by a system of
three differential equations. Two phase variables specify the geometric location
of the object in the plane, and the third one is the velocity heading. Scalar
control defines the current angular velocity of rotation of the velocity direction
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or, which is equivalent, the instantaneous turn radius. Values of the control
parameter are chosen from a closed interval. The pedestrian (evader) is a
point non-inertia object, which can instantaneously change the direction of
his velocity. The magnitude of the evader’s velocity is fixed.

Considering such a model problem, Isaacs most likely had in mind a guided
torpedo and an evading small ship as a real prototype [Breitner, 2005]. But
this was his genius – to formulate a model problem with a real prototype
behind it and very interesting from a mathematical point of view.

In his book “Differential games” [Isaacs, 1965], Isaacs introduced basic
notions of the theory: dynamics of objects, problem formulation in a class of
feedback controls, and a “main equation” in partial derivatives that the Value
function of the game must satisfy. As the basis of the study of differential
games, Isaacs considered finding singular lines and surfaces in the game space
on which optimal trajectories merge, have breakpoints, etc., so that they do
not constitute a regular field of trajectories.

In general, Isaacs preached a retrograde solution to differential games, as
when, by moving back from a terminal manifold and using terminal values of
the payoff function, one fills out the whole game space with optimal trajecto-
ries. Since optimal trajectories carry the value of optimal result, in the end we
obtain the Value function defined in the whole game space.

Isaacs clearly realized that many of his hypotheses required careful verifica-
tion and development. In his book there are many questions that he formulated
for this or that occasion. This is also related to the homicidal chauffeur prob-
lem. Isaacs presented the solution to this problem only for a certain range of
parameters.

One of the first among US mathematicians who recognized the Isaacs
method was J. V. Breakwell, who worked at Stanford University at the time.
During these and subsequent years he was surrounded by remarkable students,
such as Antony Merz, Pierre Bernhard, Joseph Lewin, and Geert Jan Olsder
(see photographs in Fig. 1), each of whom later made a significant contribution
to the development of differential game theory. Among them A. Merz was the
oldest. P. Bernhard in his essay “Isaacs, Breakwell, and their sons” [Bernhard,
2015] wrote the following about him: “Tony had remained a close friend of
him [Breakwell], going for long mountain hikes with him, and served as a link
among the former students of John, who were all his friends.”

It was Merz who began to investigate the homicidal chauffeur problem.
Merz noted in his PhD thesis that the complexity of this differential game
had been underestimated for some time. Quoting from the thesis, page 3: “...
early in the study of this game, it was mistakenly believed that little remained
to be learned from it. Attention was consequently directed to generalizing
the dynamical model, the third order “game of two cars” being the most
natural generalization. Certain difficulties in this third-order problem raised
doubts about our understanding of the simpler homicidal chauffeur game.
These doubts proved to be well founded, and led to the decision to find the
complete solution to the present game for all values of parameters.”
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This article is written in memory of Merz. We give his biography and
describe his thesis on the homicidal chauffeur game. We also briefly mention
his main works on differential games and control theory. The bibliographic list
includes all the works of A. Merz which were found on the Internet.

A. Merz’ family kindly provided us with his autobiography, which we used.

a

b c d e

Fig. 1: a: J. V. Breakwell at a Stanford graduation; b: A. W. Merz;
c: P. Bernhard; d: J. Lewin; e: G. J. Olsder.

2 The biography

2.1 Basic biographical information

Antony Merz was born on November 25, 1932, in Zambia. His father, Russel
Merz, was a mining engineer, and his mother, Virginia Willitz Merz, held
an English degree from Cornell University and occasionally worked for small
newspapers.

Antony attended British school in Zambia. When he was 6 years old, the
family moved to the United States, settling in Texas. In 1945, before starting
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high school, the family went with his father to his new job in Peru, where
Antony learned Spanish. After finishing high school at the age of 16, he came
back to the United States, to Kansas city, where Antony attended Kansas
University from 1949 to 1953, transferring to Massachusetts Institute of Tech-
nology (MIT) as a junior.

While at MIT, an astronautics professor encouraged him to apply for a
Fulbright Fellowship in Paris, and he attended the Sorbonne for one year. His
studies at MIT resulted in two degrees – the Bachelor and Master of Sciences,
with the Master Thesis entitled “An approximation to the transient response
for systems having slowly-varying parameters.”

In 1957, Merz returned to Kansas, and his employer convinced him to study
applied mathematics at Texas Christian University. In 1960, he received his
master’s degree in applied mathematics.

In 1960, Merz moved to New York, where he attended MIT and met his
future wife, Peggy, in 1962. He realized that the PhD program in Aero-
Astronautic Engineering had changed since his earlier studies. Living in
Boston, Antony was preparing for his oral examination, which he did not pass.
He contacted Stanford University and was admitted for a PhD program in the
department of aeronautics and astronautics in 1967. His scientific adviser was
professor John Valentine Breakwell.

The dissertation was completed in 1971.

After defending the dissertation, Merz worked until 1979 in small research
companies near Stanford University. He still had a connection to Breakwell.

From 1979 until his retirement in 1996, Merz worked for the Lockheed Re-
search Laboratory where he participated, particularly, in the project on Global
Positioning System. In his autobiography, he wrote: “The most memorable job
I concluded at Lockheed was a solo task typical in size, which can be described
in qualitative terms. This job, worked on for over a year, produced a computer
program which modeled the 18 satellites forming at that time the Global Posi-
tioning System. Its purpose was the tracking of moving targets on or near the
earth, and updating the estimates of the three position and velocity figures
which model the target trajectories.”

Antony Merz died on October 19, 2017. He is survived by his wife, Peggy
Merz, his daughters Rebecca Stephens and Alison Merz, and his brother Joy
J. Merz of Tucson.

2.2 Hobbies, humanity, and sport

Since his student years at the University of Kansas, Antony had been fond of
playing the tenor banjo. While living in Cambridge, he took lessons from the
professional banjoist William Bradford Keith (“Bill Keith”). In the early 60s,
in New York, Antony continued his passion for music, studying banjo with the
famous musician Roger Sprung, about whom he wrote: “...he was plenty good
enough for me, then and later, and I had a lot of fun getting over to his place
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in New York during the week, and hearing him talk about the two albums he
had recorded to that time.”

All who knew Merz noted his delicate sense of humor and love of puns. His
daughter Alison says (from the letter to the authors of 04/03/2019): “Antony
had a silly side too, and was an avid fan of British comedy troupe Monty
Python. Like those comedians, he himself had a very dry wit and was known for
his straight-faced delivery. He was also very clever with the English language
and was a master of puns, wordplay, and double entendres. His family and
friends enjoyed his witty banter and remember him for nearly always being in
good spirits.”

These qualities of Antony played a happy role in his meeting his future wife
Peggy. In the summer of 1962, together with his friend Jordan Bonfante, he
participated in an alternating weekend house share on Fire Island, a sand bar
accessible by ferry from Long Island, New York. Once, Antony got confused
about his calendar and mistakenly visited the beach two weekends in a row,
resulting in a chance meeting with Peggy who was there on her scheduled
weekend. Antonys banjo playing and their mutual sense of humor brought
them closer, so they began to meet often and were married in 1964.

From his school years, Antony had been fond of playing softball. The official
newspaper of the undergraduates of MIT called him “the top all-around player
in the league” (No. 26, May 20, 1955). A year earlier in the same newspaper:
“Merz has been touted as the fastest hurler in the intramurals” (No. 19, April
30,1954). In his mid-40s, he joined a softball league in Palo Alto and pitched
for a team sponsored by a neighborhood restaurant near Stanford University.

3 Merz’ thesis “The Homicidal Chauffeur – a Differential Game”

The Merz’ thesis can be found in the library of Stanford University. In Figure 2
the title page of the thesis is shown.

We will begin the story about Merz’ dissertation by quoting from his ac-
knowledgements, page iii: “I express my most profound gratitude to Professor
Breakwell for his direction, patience, unflagging enthusiasm during the course
of this research: Many of the results of the work would certainly not have come
into light without his extraordinarymathematical perception. I also thank Pro-
fessor Bryson and Professor Franklin for agreeing to serve as readers and for
the interest and understanding they have shown in this work. Fellow doctorate
candidates Pierre Bernhard and John Dixon were frequently helpful during the
study, and I thank them both. Further, I wish to record my gratitude to my
wife, Peggy, who typed several versions of the manuscript, and who provided
encouragement and solace when they were needed. Mrs. Diana Shull typed
the final version of this document with perseverance and skill, for which I am
grateful.”
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Fig. 2: Title page of the PhD thesis by A. W. Merz.

3.1 Dynamics of the game

The motions of the car and the pedestrian are described in the original coor-
dinates by the following system of equations, which is explained in Fig. 3,

Ẋp = Vp sin θp Ẋe = Ve sin θe

Ẏp = Vp cos θp Ẏe = Ve cos θe

θ̇p =
Vp
R
ϕ 0 ≤ θe < 2π

|ϕ| ≤ 1

Here, (Xp, Yp) is the position of the pursuer (car) in the plane, Vp is his velocity,
θp is the heading of the pursuer, R is the minimum turning radius, and φ is
the control of the pursuer; (Xe, Ye), Ve, θe are the position, the velocity, and
the control of the evader (pedestrian).

The pursuer strives, as soon as possible, to capture the non-inertial evader
by changing the rate of turn. The objective of the evader is the opposite.
The capture occurs if the distance between the players becomes less than a
given number ℓ. By normalizing the time and the distance, one can achieve
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Fig. 3: Coordinate system.

that the minimum turning radius R of the pursuer and his velocity become
equal to 1. Therefore, we can use the dimensionless capture radius β = ℓ/R
and the evader’s dimensionless velocity γ = Ve/Vp as the parameters of the
game. Rewriting the dynamics in the relative coordinate system, with (x, y)
being the relative position of the evader with respect to the pursuer, yields
the two-dimensional in the state variables differential game

ẋ = −ϕy + γ sinψ
ẏ = ϕx+ γ cosψ − 1
|ϕ| ≤ 1, ψ ∈ [0, 2π).

(1)

Here, ψ is the clockwise angle from the positive y-axis to the direction of E’s
velocity vector. So, ϕ is the control of the pursuer, and ψ is the control of the
evader.

3.2 Isaacs’ solution

In the book by R. Isaacs, the solution to the homicidal chauffeur game was
given only for a narrow range of parameters. The left panel of Fig. 4 shows a
drawing from his book. The horizontal axis measures x in (1), and the vertical
axis measures y. Isaacs used the symbol C of the usable part to denote the
points on the boundary of the terminal circle through which the player P can
guarantee leading the trajectory to the inside of the terminal set. He found
that if parameters β, γ satisfy the inequality β2+γ2 ≤ 1, then two barrier lines
emanate tangentially to the boundary of the terminal set from the endpoints
of the usable part in reverse time.

The solution is symmetric with respect to the vertical axis. The upper
part of the vertical axis is a singular line. Forward time optimal trajectories
meet this line at a certain angle and then go along it towards the target set.
According to the terminology of R. Isaacs, this line is called universal. The
part of the vertical axis adjoining the target set from below is also a universal
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singular line. Optimal trajectories go down along it. The rest of the vertical
axis below this universal part is dispersal: two optimal paths emanate from
every point of it. On the barrier line B, the value function is discontinuous. The
equivocal singular line emanates tangentially from the terminal point B of the
barrier (right panel of Fig. 4). It separates two regions. Optimal trajectories
that approach the equivocal curve split into two paths: the first one goes along
the curve, and the second one leaves it and comes to the regular region on the
right (optimal trajectories in this region are shown in the left panel of Fig. 4).

The equivocal curve is described through a differential equation which can
not be integrated explicitly. Therefore, an explicit description of the Value
function in the region between the equivocal and barrier lines is troublesome.
The most difficult, for the investigation, is the part (denoted by R. Isaacs with
a question mark) adjoining to the boundary of the terminal circle and the
downside of the barrier (Fig. 4, right panel). He could not obtain a solution
for this part.

Isaacs also analyzed the case where the right and left barriers intersect on
the vertical axis.

Let us quote the words of Merz from his dissertation, page 3: “The pioneer-
ing work by Isaacs describes a treatment of the problem which is complete only
for certain rather narrow ranges of the two parameters... Specifically, a barrier
and an equivocal line were found to enclose ‘turn-away’ zones in the relative
space, and the y-axis was found to be either a universal line or a pursuer’s
dispersal line.”

Fig. 4: Figures from Isaacs’ book. Left panel: Solution in primary region. Right
panel: Turn-away zone.
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3.3 Partition of parameter space into subregions with different types of
solutions

Merz obtained a complete solution to the problem for all possible values of the
two parameters β, γ. The curve c1 shown in Fig. 5 (in part in the left panel
and in whole in the right panel) corresponds to the equation β2 + γ2 = 1. The
inequality β2 + γ2 ≤ 1 holds below this curve. The curve c2 is described by
the relation

β = γ sin−1 γ +
√
1− γ2 − 1.

For the parameters from region II above this curve, the right and, symmetrical
to this, the left barrier do not intersect. Below this line they do intersect.
Accordingly, in the first case, the capture set for the player P is the whole
plane, whereas in the second case it is a part of the plane bounded by the
pieces of the barrier lines up to the point of their intersection. The curve c3
satisfies the relation

cos(
β

2γ
) + γ = 0.

For the parameters in region II to the right of the curve c3, there is a point
A (Fig. 4, left panel) on the barrier which is a dispersal point for optimal
trajectories above the barrier. It is the player E’s dispersal point, from which
a bundle of optimal motions emanates for ϕ = 1. This implies that the barrier
is continued by an equivocal singular line (Fig. 4, right panel). The curve c4 is
calculated numerically by using relations that guarantee that below the barrier
line the optimal control of the player P is ϕ = −1. The case corresponding to
region I and subregion IIc, was called the classical one by Merz. The solution
for it was described and discussed in the second chapter of his thesis.

In parameter region I, the solution coincides with that described in Isaacs’
book. For parameters from subregion IIc belonging to the primary part (out-
side the turn-away zone), the solution also coincides with that given by Isaacs.
In the interior of each of the two turn-away zones, the Value function is smooth
and the corresponding field of optimal motions is regular. The optimal control
of the player P in the right (left) turn-away zone is ϕ = −1 (ϕ = 1). In fact,
Merz used this condition to distinguish the parameter subregion IIc. Of par-
ticular interest are safe-contact optimal motions going along the right (left)
part of the boundary of the terminal circle. For the right part, such “limiting”
motions are generated by optimal trajectories coming from the shaded region
in Fig. 4, right panel.

In the third chapter, the solution to the classical case was extended for the
subregions IIa, IIb, IId, and IIe, to cover the range of parameters satisfying
the inequality β2 + γ2 ≤ 1. In the fourth chapter, a solution was given for the
values of parameters satisfying the inequality β2 + γ2 > 1.

Merz divided the parameter space into 20 subregions (Fig. 5, right panel).
The thesis contains the description (explicit or implicit) of all curves separat-
ing the subregions. For every subregion, the structure of the solution and all
possible singular lines were established (Fig. 6).
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Fig. 5: Figures from Merz’ thesis. The horizontal axis measures γ, the vertical
axis measures β. Left panel: Separation of parameter area in subregions for
classical case. Right panel: Separation of parameter space in subregions for
general case.

Fig. 6: Table from Merz’ thesis showing the type of solution for each subregion
of parameter partition. Notation: B = barrier, UL = universal line, PDLy =
pursuer’s dispersal line on the y-axis, PDL = pursuer’s dispersal line outside
the y-axis, EDLa = evader’s dispersal line emanating from a point A, EDLc =
evader’s dispersal line emanating from a point C, 1D+ and 1D− = two variants
of safe contact motions, EL = equivocal line, SE = switch envelope line, SL
= switch line, FL = focal line.

3.4 Singular lines

The detection of singular lines and singular surfaces was thought by Isaacs
to be the basis for the study of differential games. For problems in the plane,
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those lines are singular, on which the regularity of the field of optimal trajecto-
ries is lost. In simplest cases this results in kinks in the field, whereas in more
complicated situations it implies merging or divergence of optimal trajectories
and, associated with that, the loss of the uniqueness of optimal motions. Since
the notion of optimal motion is connected with the notion of the Value func-
tion, the continuity and differentiability of the Value function are analyzed on
singular lines. It is supposed that the Value function is locally, continuously
differentiable on either side of a singular line.

In the Merz’ dissertation, the term “exceptional lines” is used instead of
“singular lines”. Let us quote from the thesis, page 3: “Loci ... which sepa-
rate two qualitatively distinct families of relative trajectories and which may
or may not be trajectories themselves, will be termed ‘exceptional lines.’ As
will be made clear by later results, Isaacs’ terminology ‘singular line’ has an
undesirable connotation to most control theoreticians, and is not sufficiently
broad in meaning. The present choice is made to accommodate as large class
of such arcs as possible...”

However, the term “exceptional lines” never caught on, while the term
“singular lines” is still used in differential games.

Let us briefly describe, at a heuristic level, the types of singular lines in
the plane which occur in the homicidal chauffeur problem.

In Figure 7a and b, barriers and universal lines are schematically shown.
Optimal trajectories cannot penetrate the barriers and should go around their
ends. The Value function is discontinuous across barrier lines. Optimal trajec-
tories meet the universal line at some angle and then go along it. The Value
function is smooth across the universal line.

At first sight, the focal line (Fig. 7c) is similar to the universal line (Fig. 7b).
However, optimal trajectories meet this line tangentially and then go along it.
The Value function is nonsmooth across the focal line.

The switch line (Fig. 7d) is characterized by switching the optimal control
of the pursuer. One optimal motion comes to this singular line at some non-
zero angle, and another leaves it also at a non-zero angle. Such a type of
singular line is one of the simplest types. The Value function is smooth across
this line.

Optimal trajectories meet the equivocal line at some angle (Fig. 8a). After
arrival, they split into two equivalent optimal trajectories: one goes along the
equivocal line, whereas another optimal trajectory leaves it at some angle. One
says that the equivocal line is “controlled” by the player E, if it is his actions
on the singular line that determine the subsequent optimal motion. In the case
when the player E chooses a control he used before coming to the equivocal
line, the optimal motion goes along the line with some intermediate control
of the player P . If, however, the player E switches to the control which is
prescribed for him on the other side of singular line, the motion is “dropped”
to this side. Such a type of equivocal line is related to the local convexity of
the Value function in the neighborhood of the point considered. In the case
of local concavity of the Value function, the equivocal line is “controlled” by
the player P . Isaacs showed that equivocal singular lines can exist in differ-
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Fig. 7: a: Barrier; b: Universal line; c: Focal line; d: Switch line.

ential games only; they are absent in control problems. The Value function is
nonsmooth across the equivocal line.

The switch envelope (Fig. 8b) is similar to the equivocal line, but optimal
trajectories come tangentially to it and then go along it or leave, depending
on the control choice of the pursuer. The Value function is nonsmooth across
the switch envelope. It may well be that the switch envelope is an equivocal
line controlled by the player P . The tangential approach of the singular line
is associated with the “circle” constraint on the control of player E , having a
smooth boundary.

Optimal trajectories leave the dispersal line (Fig. 8c and d) of the pursuer
to the left or the right at some angle, depending on the pursuer’s control choice.
In all cases, except for region III, the lower part of the negative y-axis is the
pursuer’s dispersal line. The Value function is locally concave in this case. For
the dispersal line of the evader, optimal trajectories depart to the left or to
the right (Fig. 8e), depending on the evader’s control choice. Here, the Value
function is locally convex. The Value function is continuous but nonsmooth
across the dispersal lines.

The safe contact trajectories (Fig. 9a and b) are parts of the boundary
of the capture set, which can be tracked by optimal motions. The existence
of such motions is one of the particular features of time-optimal differential
games.

We have described the types of singular lines presenting in the homicidal
chauffeur game. There are also some single points from which a bundle of
optimal motions emanate. These are the point A in Fig. 4, left panel, as well
as points A depicted in the thesis in Figs. 4.6 and B-1.
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Fig. 8: a: Equivocal line; b: Switch envelope; c, d: Dispersal line of the pursuer;
e: Dispersal line of the evader.

a b

Fig. 9: a, b: Safe contact.

The discovery of equivocal singular lines is one of the most important
achievements of Isaacs. Focal lines were discovered by Breakwell and Merz.

3.5 On some very sharp results

It is worth mentioning that the thesis is written very briefly. Some authors
have tried to verify the solution in more detail or by using other methods (see,
e.g., [Bardi et al., 1999, Botkin et al., 2013, Meyer et al., 2005, Mikhalev and
Ushakov, 2007, Mitchell, 2002, Raivio and Ehtamo, 2000]). Let us especially
note the paper [Pachter and Coates, 2018] where detailed analytic calculations
related to the solution of the homicidal chauffeur problem for the parameters
β, γ corresponding to the region IIc of the classical case, are performed. In
these works [Coates et al., 2017a,b], it is shown how the scheme of the solution
for the homicidal chauffeur problem can be applied in investigation of time-
optimal control problems for the Dubins car with different terminal sets.



14

The authors of this paper have also applied their numerical algorithm
[Patsko and Turova, 2001] to computing solutions to the homicidal chauf-
feur problem. In Figure 10, results of such computations for the classical game
are presented: level sets of the Value function (left panel) and a 3-dimensional
graph of the Value function (right panel). It is clearly seen that the Value
function is discontinuous along the barrier lines.

The basis of our numerical algorithm, which is directed to time-optimal
differential games in the plane, is the construction of level sets of the Value
function. Moving backward in time with a sufficiently small step size from the
terminal set, we build up the next level set. At the same time, the boundary of
the level set constructed on the previous step is analyzed and the parts with
barrier properties are distinguished. These parts are taken into account when
designing the next level set.

The algorithm cannot replace an analytic investigation of the problem. We
used it to obtain a visual geometric demonstration of level sets and a graph of
the Value function, as well as, in some cases, to verify the solution obtained
by A. Merz.

We tried to compute solutions for some complicated cases, particularly for
parameter values from the subregion IIe where a focal line arises. In this case,
there is a piece in the turn-away zone on the right of the axis y, where the
optimal control of the player P is ϕ = 1 (recall that the solution is symmetric
with respect to exis y). This part adjoins the barrier line and is separated from
the part where ϕ = −1 by a complex line composed (see Fig. 11, left panel) of
the dispersal line PDL (erroneously not mentioned in the table in Fig. 6), two
parts of the switch envelope line SE, and the focal line FL located between
them.

However, our efforts were not successful. Even very fine discretization in
the numerical algorithm (replacement of the circled terminal set by a polygon,
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Fig. 10: Classical problem for parameter values β = 0.3, γ = 0.3. Left panel:
Level sets of the Value function. Right panel: Graph of the Value function.
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Fig. 11: Left panel: Structure of optimal paths in the turn-away zone for sub-
region IIe (Figure 3.7 from the thesis). The Value function is not differentiable
on the line composed of the pursuer’s dispersal line PDL, the switch enve-
lope SE, and the focal line FL. Right panel: Level sets of the Value function
for parameters from subregion IId computed using the algorithm [Patsko and
Turova, 2001] for β = 0.3, γ = 0.7.

finite step size of the backward construction of the Value function’s isochrones,
etc.) for parameters β, γ from the narrow subregion IIe, did not help reveal cor-
ner points which must be present on level sets in the turn-away zone by virtue
of the fact that the Value function is not differentiable across the separation
line mentioned above.

An example of a numerical solution with nonsmooth isochrones in the turn-
away zone is shown in the right panel of Fig. 11, which, however, corresponds
to the values of parameters from the subregion IId. In this case, there is also a
part of the turn-away zone where the optimal control of the player P is ϕ = 1.
But the focal line disappears.

In Figure 12, a very interesting example for the values of parameters from
the subregion IVc is demonstrated. To the left, the picture from the thesis is
presented, where the barrier is replaced by the dispersal lines of the pursuer
and evader. To the right, a result of the computation of the level sets of the
Value function obtained by our algorithm is given. It seems that the thick line
bounding the turn-away zone is a barrier line, but this is not the case. In fact,
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Fig. 12: Left panel: Structure of optimal trajectories in subregion IVc; Right
panel: Level sets of the Value function for β = 1.2, γ = 0.7.
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Fig. 13: Left panel: Enlarged fragment of the level sets depicted in the right
panel of Fig. 12. Right panel: Zoomed fragment of level sets inside the small
rectangle shown in red in the left panel.

the structure of level sets in the accumulation region corresponds exactly to
the solution structure shown in the left panel.

Fragments of the accumulation region from Fig. 12, right panel, are shown
in Fig. 13. The curve composed of the level sets’ corner points above the
accumulation region is the dispersal line of the evader. The curve composed
of the corner points below the accumulation region is the dispersal line of the
pursuer. The Value function is continuous in the accumulation region.
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EDL

PDL

B

Fig. 14: Left panel: Graph of the Value function for β = 1.2, γ = 0.7. Right
panel: Fragment of the graph of the Value function shown to the left. The
salient curve, corresponding to the line PDL from Fig. 11, starts at the pointB.

The graph of the Value function for the example from Figs. 12 and 13 is
presented in Fig. 14 to the left. It confirms the continuity of the Value function
in the accumulation region. In the right panel of Fig. 14, a fragment of the
graph is shown where the dispersal lines of the pursuer and evader, as well as
the equivocal line emanating from the point B, are clearly seen.

We finish the story about Merz’ dissertation with a quote from his memoirs:
“I was glad that I had not embarrassed Prof. John Breakwell, for whom I had
written my thesis, titled ‘The Homicidal Chauffeur: a Differential Game.’ ”

4 Works completed after defense of the thesis

4.1 The game of two cars

It is not natural for applications that one of the two objects in a pursuit
problem is non-inertial. If, in the homicidal chauffeur game, the non-inertial
evader is replaced by an object with the dynamics of the car, then we obtain
the game of two cars (“the most natural generalization”, see quote from the
thesis at the end of Subsection 3.1), which is described in Isaacs’ book. The
dynamics of this game in relative coordinates reads:

ẋ = −ω1u1y + v2 sin θ,

ẏ = ω1u1x− v1 + v2 cos θ,

θ̇ = −ω1u1 + ω2u2,

|u1| ≤ 1, |u2| ≤ 1.
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Here, ω1, ω2 are the maximum magnitudes of the angular velocities of the first
and second objects; v1, v2 are the constant magnitudes of linear velocities; θ is
the relative heading angle of the second object; u1, u2 are controls restricted by
the geometric constraints. The first player minimizes the time needed for the
phase point to reach a given terminal set. The second player has the opposite
interest. Usually, the terminal set is taken as a circle of radius β in the plane
x, y with the center at the origin. Very often Merz used the symbol A for the
first object and the symbol B for the second one. The dimension of the state
vector is equal to three. This is the main reason why the game of two cars has
not been solved completely up to now.

A. Merz investigated the game of two cars in the case of two identical
cars. The solution in this case depends on a single parameter, which, after
normalization, can be chosen as the radius β of the terminal circle. Here, the
values of ω1 = ω2, v1 = v2 are set equal to 1. In the left panel of Fig. 15, the
first page of the paper [5] published in JOTA in 1972 is shown.

In the case of two identical cars, the three-dimensional set, from where the
first player guarantees that the phase point will reach the terminal set within
a finite time, is bounded. This set is called “capture set.” In the right panel of

Fig. 15: Left panel: First page of the paper by Merz about the game of two cars.
Right panel: Figure 8a from the paper about the game of two cars showing
optimal strategies in the capture set for β = 0.5 and θ = −165 degrees.
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Fig. 15, the section of the capture set for the angle coordinate θ = −165 degrees
is shown. In Merz’ paper such sections are presented for some collection of
angles θ. Computations are performed for the terminal circle of radius β = 0.5.
In the time-optimal game, Merz described two singular surfaces. These are
the dispersal surface for the second player and the universal surface for the
first player. Unfortunately, in the paper, the type of line (respectively, two-
dimensional surface) in the upper part of the section is not described exactly.

We think that the paper by Merz can presently be used for testing three-
dimensional computer algorithms aimed at solving time-optimal differential
games. In particular, it is very interesting to compute the three-dimensional
level sets of the Value function for the game of two identical cars.

4.2 One-on-one combat problem: Role determination

Among aviation tasks, aerial combat problems are very important. The basic
one is the one-on-one combat problem. In this problem, we want to know from
where the aircraft A wins and, vice versa, from where the aircraft B wins. If
this problem is investigated in the horizontal plane, then the dynamics of two
cars is appropriate. From the mathematical point of view, two terminal sets
are considered: Target A and Target B (Fig. 16). In the relative coordinates,
we try to find a capture region for the aircraft A (from where it wins) and a
capture region for the aircraft B.

The paper by Olsder and Breakwell [1974] was the first of its kind in differ-
ential game literature. The Target A in their paper corresponds to situations
for which the geometric position of the aircraft B is in the direction of aircraft
A’s velocity vector, and the distance between A and B is not greater than the
given value lA (Fig. 16). Here, it does not matter what value takes the angle θ.

Fig. 16: One-on-one aerial combat problem.
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The same is true for the Target B; the distance between A and B is not greater
than the given value lB. The authors stress that the definitions of the target
sets depend on aircraft weapon systems. Olsder and Breakwell point out that
“the first attempt of the division of three-dimensional state space on two parts
was made in an unpublished paper by A.W. Merz” for the case of identical
combatants.

In Figure 17, the introductory part of the paper [25] on aerial combat by
Merz and Hague is shown. They consider a case where the linear velocity of
the aircraft A is greater than that of the aircraft B, but the aircraft A is less
maneuverable.

Figure 18 explains the terminal conditions characterizing the Targets A
and B. Instead of constraints lA and lB, we have constraints HA and HB on
heading angles. In this way, the authors describe the tail-chase situation.

The paper was based on NASA reports [16, 21], in which the problem was
described in more detail.

In Figure 19, two θ-sections of the three-dimensional capture regions for
the aircraft A and B are shown. In the paper, the θ-sections are computed
for some collection of values of the angle θ. A question arises. Would it be
possible, using the numerical methods of differential game theory, to repeat
or maybe correct the results obtained by Merz? A numerical algorithm must
be oriented towards three-dimensional dynamics and must take into account
state constraints. In the pictures a) and b) of Fig. 19, lines which separate the
capture regions, as well as the capture regions and the domain “draw” where
neither aircraft can win, are sections of barrier surfaces. The notation BRLAL,
for example, indicates that the corresponding curve in the picture is composed
using direct time motions with a right turn at some time interval, followed by
a left turn for the aircraft B, and a left turn for the aircraft A.

Fig. 17: Introductory part of the paper [25] on the aerial combat problem.
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Fig. 18: Figure 1 from the paper [25] showing terminal conditions in the aerial
combat problem.

Fig. 19: Figures 4a and b from the paper [25] showing barriers and capture
regions in the aerial combat problem.

4.3 Problem of maritime collision avoidance

An initial part of the first paper [7] by Merz on the problem of maritime
collision avoidance is shown in the left panel of Fig. 20. The problem of collision
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avoidance is not related to differential games, but to optimal control theory.
The payoff is the closest distance reached between two ships as they approach
each other. The short-term motion of each ship is represented by a constant
speed model with lateral accelerations being the only means of control. Each
ship can maneuver by changing its heading. The turn rates of both ships are
assumed to be constrained by symmetric bounds, corresponding to hard left
or hard right turns. So, this is also the dynamics of two cars. It is supposed
that the controls of the cars are coordinated.

In the introduction, Merz indicates that officially recommended maneuvers
sometimes lead to a collision, and shows a corresponding example. In the right
panel of Fig. 20 taken from the paper, one can see what happens if the official
instructions are applied. The picture c) to the right corresponds to the solution
obtained with optimal control theory.

The final result of this paper by Merz is the pictures showing the synthesis
of optimal coordinated controls of the ships. Using the (x, y) relative position
and the known relative heading angle θ, the optimal controls of the ships A
and B are obtained. For example, in Fig. 21 the right turn of the ship A and
the left turn of the ship B are the optimal controls. Then the miss-distance rf
is 1.0 in some normalized units. There are singular dispersal lines (θ-sections of
three-dimensional singular surface) in this problem where the optimal control
is nonunique. Merz points out that the non-uniqueness of optimal controls is
the hidden reason of many of the catastrophes recorded in maritime history.

Fig. 20: Left panel: Introductory part of the paper [7] on the maritime collision
avoidance problem. Right panel: Figure 1 from the paper [7] showing a) initial
condition, b) avoidance maneuver according to existing instructions, and c)
non-evident avoidance maneuver according to optimal control theory.
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Fig. 21: Optimal control synthesis for identical ships, cooperative case, in the
maritime collision avoidance problem. Figures 3a and b from the paper [7].

In the paper, there are also pictures of synthesis for cases of the non-
cooperative control of two ships when one of them goes by its previous course
and the other executes an optimal maneuver.

This paper was followed by other papers by Merz and coauthors [18, 22,
24, 31], in which the influence of technical details (for example, the accuracy
of radar systems, sizes of the ships) was also analyzed.

Problems of collision avoidance for two aircraft were considered by A. Merz
and coauthors in [6, 8, 9, 10, 12, 37].

The problem of collision avoidance is a very popular topic in modern opti-
mal control literature, and all the authors cite the works by Merz.

4.4 American football as a differential game

Breakwell’s son, John Alexander Breakwell, wrote to the authors: “. . . There
is a little story about the differential games seminars at Stanford you might
find interesting. Later games involved pursuit and evasion along a boundary
(a straight line often). These seminars were attended by the young Stanford
(American) football coach, who picked up the idea that the optimal evasion
was often to aim for the boundary. This coach, whose name was Bill Walsh,
went on to be the most successful professional football coach in American
history.”

Under the influence of such contacts, Breakwell and Merz wrote the paper
[39], in which they considered three typical situations encountered while play-
ing American football: the one-on-one equal-speed problem; the three-on-three
equal-speed problem; the one-on-one problem with the evader E moving faster
than the pursuer P . The motions of the players are assumed to be non-inertial.
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The pursuer captures the evader if the distance between them becomes less
than a given magnitude L.

Briefly consider the first two problems:

One-on-one problem (Fig. 22). The evader E tries to maximize his dis-
tance covered in the direction of the end zone before being intercepted by the
pursuer. If the pursuer is located at the point P2, then the best equilibrium
interception point is the point in the center with the coordinate y ≈ 30. But
if the pursuer is at the point P1, then the best equilibrium point lies on the
left border of the field. In this case, we have some analogy with the lifeline
differential games.

Three-on-three problem (Fig. 23). The initial positions of the players are
fixed. The evader E1 has the ball, and the other two evaders must be optimally
defended against the two pursuers P2 and P3. Under optimal behavior, the
evader E1 runs to the point A. If the pursuer P1 acts non-optimally, then the
evader E1 will further run along the border of the field. In the case of the
optimal behavior of the pursuer P1, the interception will be at the point A.
Here, the evader E1 passes the ball through the air to the evader E2 or E3. In
anticipation, the evaders E2 and E3 move so that, having received a ball, each
of them can run with it as far as possible towards the end of the field until his
interception. Some explanations related to the formulation and solution of an
arising differential game are given in the paper. In particular, the behavior of
the pursuer P3 is non-trivial. He watches both the behavior of E2 and that of
E3.

American football is a very complicated game. During game preparations,
the coach and all the team players analyze and learn by heart optimal com-
binations. It may well be that the application of differential game theory can
help in the analysis of certain situations. Let’s quote the words of Breakwell’s

Fig. 22: Figure 2 from the paper [39] on football as a differential game showing
breakthrough to the field side in the one-on-one equal-speed problem.



25

Fig. 23: Figure 3 from the paper [39] on football as a differential game showing
optimal and suboptimal play in the three-on-three equal-speed problem.

son: “That the differential games theory had some impact on football is a
conjecture, but a pretty good one. Evaluation requires expertise in both foot-
ball and differential games. This is rare. But the essence is that the optimal
strategy for the evader was to head for the boundary. This both as practiced
in football today, and as shown by the theory.”

5 Bibliography of Merz’ works

Merz published many (of course, by the standards of those years) works on
the problems of applied character. We give a list of these works. They can
be conditionally assigned to the topics: homicidal chauffeur game [3, 4, 11],
game of two cars with application mainly to aeronautic problems [5, 23, 29],
maritime collision avoidance [7, 18, 22, 24, 31, 35], aircraft collision avoidance
[6, 8, 9, 10, 12, 37], to pursue or to evade [16, 21, 25, 28, 32, 33, 35], optimal
team tactics [39, 40, 42], satellite pursuit-evasion [34, 36], missile attitude
stabilization [1, 2], optimization of airfoil [13, 14, 17], state, velocity, and orbit
estimation [26, 27, 30, 31, 38, 41, 42, 43], and trajectory optimization for upper
atmosphere sampling flights [15, 19, 20].

6 Afterword

The papers by A. Merz inspired many researchers around the world to work on
control and differential game problems. It seems that nowadays, the develop-
ment of numerical methods has increased the attention given to Merz’ works.
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First of all, this is related to the impact of his signature work, the homicidal
chauffeur game.

Currently, the theory of differential games is an advanced mathematical
discipline. However, the number of model problems with good applied focus
which have been solved is very small. Besides, almost every article on this
subject suffers from the absence of a rigorous problem statement. The fact
is that strict definitions, which are used in theoretical works, are good and
convenient only for theoretical investigations related to e.g. the existence of
the Value function, extremal properties of feedback optimal strategies, etc.
They can hardly be utilized when solving concrete problems. What is, for
example, “optimal motion” in differential games? Each researcher involved in
applied topics understands this in his own, often nonstrict, sense.

So there may be many questions about Merz’ thesis and his subsequent
works in the field of differential games. Nevertheless, 50 years ago he took
up work that is hardly possible for anyone even now. His dissertation is a
challenge to modern mathematicians working in the field of differential games
and numerical methods. Can anyone verify his results, strictly substantiate
them, find possible mistakes?

We end the article with quotes from two letters of A. Merz to the authors.
August 1, 2008: “...the complexity of even low-order differential games can

be very great, and it appears at this time that more realistic dynamic models
are virtually out of reach from a computational point of view. For this reason
it appears that using optimal controls derived from low-order dynamic models
in actual physical models of higher-order may be the best way of testing the
theory of differential games. These methods may show that the results found
are ‘better than other known methods,’ and are therefore of practical use in
applications.”

March 22, 2010: “I have had frequent thoughts of the Game recently(despite
the 39-year time interval since its publication), and only wish that I had done
some work for the Three-Dimensional problem. This is much closer to the
realistic case, with roll-angle as a second control for P and with E still capable
of acceleration in any direction normal to E’s velocity. I don’t think it would
be simple, and might not be solvable, but I still feel some sorrow at not having
advanced our work in this way.”
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Antony Willits Merz, 2008.
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