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SPECIAL ASPECTS OF CONVEX HULL CONSTRUCTING
IN LINEAR DIFFERENTIAL GAMES OF SMALL DIMENSION

V.S.Patsko

Institute of Mathematics and Mechanics, S.Kovalevskaya, 16, Ekaterinburg, Russia

Abstract: The backward constructions for building the level sets of value function

of differential games are discussed. Special aspects are outlined which can be used

in fast algorithms. The examples of computer calculations are presented.

Keywords: Differential games, feedback control, numerical methods, terminal

control, time-optimal control.

1. INTRODUCTION
In this paper, the linear differential games

& = A{)z + B(t)u + C(t)v, (1)

reR", ue P, veQ, y(z(T)) — minmax

with terminal time T and convex payoff function
v, which values are minimized by the first player
and maximized by the second one, are considered.

It is known (Krasovskii and Subbotin, 1974, 1988)
that such games have the following attractive
properties:

e The value function (¢,z) — V(t,r) is convex
n z;

e The transformation y(t) = X(T,t)z(t), where
X(T,t) is the fundamental Cauchy matrix corre-
spondent to the homogeneous part of the system
(1), provides the transition to the equivalent game
without the phase vector in the right hand side of
the dynamic equation;

o If the payoff function depends on some m coor-
dinates of the phase vector at the terminal time T
only, then the transformation X,, (7', t)z(t), where
Xm (T, t) are m corresponding rows of the matrix
X(T,t), gives the transition to the equivalent m-
order differential game.

The paper is devoted to the case when the payoff
function depends on two or three coordinates of
the phase vector. Such problems are called the
games of small dimension.
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The backward procedure in coordinates of the
equivalent game is described for the approximate
constructing the level sets of the value function
on the given sequence of time moments, The
main difficulty of such constructing corresponds
to transition from one time moment to another
and consists in finding the convex hull of some
piecewise-linear positively-homogeneous function.
In the paper, the attention is drawn to charac-
teristics which can be used for obtaining the fast
algorithms of constructing the convex hull: before
the beginning the convexing process we know the
places where the local convexity can be violated.
So, the iterative process of constructing the con-
vex hull begins just at such places.

In spite of the fact that in linear differential games
with nonfixed terminal time, the level sets of the
value function are, as a rule, not convex, the main
specific ideas involved into the algorithm of the
backward procedure for the games with fixed ter-
minal time can be applied for this case too. At the
end of the paper, the examples of constructing the
level sets of the value function for the linear time-
optimal games in the plane are given.

Numerical methods for solving differential games
based on the backward procedures are developed
in papers of V.N.Ushakov and his collaborators
(see e.g. Ushakov, 1981; Taras’yev, et al., 1988).
The results presented in this paper were ob-
tained by the author together with N.D.Botkin,
V.L.Turova, M.A.Zarkh.



2. LINEAR DIFFERENTIAL GAMES WITH
FIXED TERMINAL TIME

2.1 Backward procedure

Assume that the transfer from the game (1) with
the payoff function v depending on m coordinates
of the phase vector to the equivalent game

y=D)u+ E(t)v, (2)

D(t) = Xm(T,1)B(t), E(t) = Xm(T,1)C(t),

y€e R™, veEQ, Y(T))

is already done. Let on the interval [t.,T] the
sequence of time moments t;: tn=T, ..., {;=t;41—
A, ... to=t, dividing the interval with the step A
is given. The interest is in finding the level sets
W.(t:)={yeR™: V(t;,y)<c} of the value function
V for the given value of parameter c.

u € P,

Replace the dynamics (2) by the piecewise-
constant dynamics

y=D(t)u+ E(t)v, (3)

D(t) = D(t;), E(t) = E(t:), t€ [ti,tit1).

Instead of the sets P and @, let us consider their
polyhedral approximations P, Q. Let ¥ be the
approximating payoff function. For any c, its level
set M. = {y : 9(y) < ¢} is a convex polyhedron.

The approximating game (3) is taken so that, for
each step [t;,¢i41] of the backward procedure, we
deal with the game with simple motions, poly-
hedral convex control constraints and the con-
vex polyhedral target set. Put W (ty) = M.,
next, find the game solvability set W(ty—1), then
W.(tn-2) , and so on. As a result, the collec-
tion of convex sets 1s obtained which approximate
(Ponomarev and Rozov, 1978, Botkin, 1982) in
the Hausdorff metrics the level sets W,(t;) of the
value function in the game (2).

The set W(t;) can be represented (Pschenichnyi
and Sagaidak, 1970) by the formula

We(ti) = (] (We(tirr) — AD(t:)P — AE(t;)v) .
veQ

The main peculiarity 1s the following: the convex
sets to be intersected differ each from other with
the shear vector only.

Let us formulate the mentioned property in terms
of the convexing operation. The support function
l — p(I, W,(t;)) of the set W (t;) is the convex
hull of the function

el t:) = p(l, We(tim))

+Ap(L = D(t:)P) — Ap(l, E(t:)Q).
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The function ¢(-,t;) is positively-homogeneous
and piecewise-linear. The property of local con-
vexity of this function can be violated only at
the frontier of the linearity cones of the function
p(-, E(t:)Q), i.e. at the frontier of the cones gen-
erated by the normals to the big faces of the poly-
hedron E(t;)Q which have just the same vertex.

2.2 Convezing algorithm in two-dimensional case

In the case m = 2, the sets in the plane are used.
Let us agree to omit the argument ¢; in the nota-
tion of the function ¢. The linearity cones of ¢ are
determined by the normals to the convex polygons
Wc(t;+,),—D(ti)P, E(t;)Q. Gathering the outer
normals of these sets and ordering them clockwise,
the collection L of the vectors is obtained. The
collection of values ¢(!) of the function ¢ on the
vectors [ € L is denoted by ®. The collections
L, ® describe completely the function ¢.

The collection of the normals to E(t;)Q ordered
clockwise is denoted by S. The collection S is
called the collection of “suspicious” vectors. The
name is connected with the fact that the function
@ 1s locally convex on the cones which interior does
not contain the normals of the set F(t;)Q. The
violation of the local convexity can appear only
on the cones which interior contains at least one

normal of the polygon E(t;)Q.

Let LW =L, &1 = &, S = S The k +1
step of the iterative convexing process consists in
replacing the collections L) ®(*) by the collec-
tions L+ ¢ L) (k) = @(k+1) The collection
S(*) is also replaced by the new one S(k+1),

Describe now one step of the convexing process.
Suppose that the angle between two neighboring
vectors from the collection L(*) counted clock-
wise is less than 7. Let I — (*)(I) be the
piecewise-linear function determined by the col-
lections L(¥), &) Since L&) ¢ L-1) ¢ |
LW d®) ¢ o= ¢ &) then for any
vector | € L(¥) the value p*¥)() is equal to ¢(1).

Take some vector [, € S*) and check the local
convexity of the function ¢(¥) on the cone gen-
erated by the vector [, and two its neighboring
vectors I_ and !, selected counterclockwise and
clockwise from the collection L(*). In other words,
check whether the inequality I,y < (L) 1s active
in the triple of the inequalities

Ly<e(o), Ly<e(), (y<oly).

If the system of three inequalities is compati-
ble, then (by virtue of the ordering the vectors
I_, I, 1}) only the middle one can be inactive.

The algorithm of verification: find the intersec-
tion point y. of the straight lines /"y = o(l2)
and I,y = ¢(l.), and then check the inequality



l’,r ye < @(l4). If it holds, the local convexity takes
place (the middle inequality is active). In the op-
posite case, the local convexity is absent (the mid-
dle inequality is inactive).

In the first case, the vector [, is taken away from

the collection S(*) and the remained set is de-
noted by S*+1). Let L:+D=[k) @k+1)= k),

In the second case, two situations are distin-
guished. Let a be the angle counted clockwise
from I to I}

e a < m. The vector I, is taken away from the
collection S, and, simultaneously, the vectors
I_ and I} are included into the collection (one of
them or even both could be already presented in
the collection S(*)). Denote the new collection of
the “suspicious” vectors by S(¥+1). The difference
of the new collection L(*+1) from the collection
L) is that the vector I, is absent in L(¥+!). When
processing ®*) to ®5+1) the values p*)(l,) =
©(l,) are taken away;

e o > . It means that the discussed triple of
inequalities is incompatible. Thus, the convex hull
of the function ¢ does not exist, i.e. We(ti) = 0.
The constructing is ceased.

One step of the convexing algorithm has been de-
scribed. The algorithm finishes at the step with
the number j, when for the first time SG) =9, i.e.
when the collection of the “suspicious” vectors is
empty. It means that the function ), which
corresponds to the collections LU) and ®U), is lo-
cally convex everywhere. Thus, the function o)
is the convex hull of the function ¢. The second
variant of termination is the following: the angle
o between the vectors I_ and /. becomes greater
or equal to 7 after rejecting the checked vector [,
from the collection of the “suspicious” vectors at
some step. It means that W(¢;) = 0.

Y2

Fig. 1. Level sets of the value function in the
differential game (4) for ¢ = 0.9.

2{

The algorithm operates very effectively when the
number of sides of the polygon E(¢;)Q is not
very large and the step A = {4, — t; is not too
big. The computer program of the backward con-
structions which uses the convexing algorithm de-
scribed above was given in Isakova, et al. (1984).

In Fig. 1, the level sets of the value function are
presented for the differential game

i‘l = o+ v
T3 —-$21 + u, (4)
lul< 1, [v]|€1, y(&(T)) = max{zy(T), z2(T)}.

The sets are shown in coordinates of the equivalent
game. They correspond to ¢ = 0.9 and are com-
puted for several reverse time moments 7 = T"—1.

The other version of the algorithm of processing
the set We(t;4+1) to the set W(¢;) was proposed
in Botkin (1984). In this version, the frontier of
the convex polygon W,(¢;) i1s determined as a re-
sult of intersection of polygonal lines. Each line is
constructed via extremal motions emanating from
that part of the frontier of the polygon Wc(ti4+1)
which normals lay between two neighboring “sus-
picious” vectors from the collection S. The algo-
rithm can be modified for solving two-dimensional
games which level sets are not necessarily convex:
it is possible to use the property of a polygonal
line in the plane to be represented piecewise as a
“convex” or “concave” curve. Just in this way,
V.L.Turova has developed the algorithm for solv-
ing the time-optimal games in the plane.

2.8 Three-dimensional problems and the problems
of higher dimension

The idea of using a priory information about
places of violations of the local convexity was re-
alized (Zarkh and Patsko, 1988; Zarkh, 1990a)
in the case m = 3 under the assumption that the
scalar components u; of the first player’s control
and scalar components v; of the second player’s
control are restricted by the constraints |u;| <
pi, |vj| < vj. The backward procedures for con-
structing the level sets in the case m = 3 can be
used (Subbotin and Taras’yev, 1985) for finding
the epigraph of the value function y — V(¢,y),
where y € R?. In Fig. 2, the epigraph of the value
function of the game (4) is presented for the re-
verse time moment 7 = 2.4.

Zarkh and Ivanov (1992) developed the algorithm
for solving the problems in the case m > 3. In
Botkin and Ryazantseva (1992), the universal al-
gorithm based on the theory of linear inequalities
was described for the case m > 3.

2.4 The switch surfaces

Having the level sets of the value function con-
structed, it is possible to find the optimal strate-
gies. In the natural cases, the optimal strategy



Side view

Upper view

Fig. 2. Epigraph of the value function in the dif-
ferential game (4), 7= 2.4.

of the first (second) player is given via switch sur-
faces. The switch surfaces are constructed in the
space of variables of the equivalent game. The
control is implemented with some step in time.

The switch surface T()(t) of the first player for
the moment t is the surface dividing the space R™
(or sufficiently big region of the space) onto two
parts: the first player’s control takes one extremal
value in one part, and it takes another extremal
value in the other part. It is absolutely clear when
the control u is a scalar or when the control u is
a vector but its components u; are restricted by
constraints |u;| < ;. In the last case, we say about
an own switch surface for each component.

The simplest numerical constructions are realized
(Botkin and Patsko, 1982) in the case m = 2.
Here, the switch lines are built. The construc-
tion of switch surfaces for m = 3 was described in

Zarkh (1990a).

The property of stability of the first player’s scalar
optimal control with respect to the errors of the
numerical constructions was justified by Botkin
and Patsko (1983). If the control u is a vector
and its components are restricted by independent
constraints, then the fulfilment of some conditions
(connected with possible linking the surfaces cor-
responding to different components of the control
vector) must be required to state strictly that the
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constructed system of switch surfaces determines
the optimal feedback control.

Similarly, the optimal control of the second player
can be defined (Zarkh, 1990b) using the switch
surfaces. But the property of stability is absent
even though in the scalar case.

3. TIME-OPTIMAL GAMES IN THE PLANE

Let consider a conflict-controlled system with lin-
ear dynamics and geometrical bounds on controls

r=Arx+u+w, (5)

re R} ueP, veQ.

Here P and @ are convex closed polygons in the
plane. The terminal set M (a convex polygon in
the plane) is given. The first player governs the
control vector u and seeks to minimize the time of
attaining M, the aim of the second player govern-
ing the control vector v is opposite. The permis-
sible controls are the feedback controls.

It is necessary to build the sets W (8, M), 6 > 0.
Each of them is the set of all initial states xg
such that the first player guarantees the transi-
tion of the state vector to M by the time 8. The
set W (0, M) is the level set of the value function.

3.1 The main idea of the algorithm

The set W(6, M) is formed via step-by-step pro-
cedure giving a sequence of embedded sets

W(A, M) C W(2A, M) C W(3A, M)
C..CWEAM)YC..C W M)

Here A is the step of the backward construction.
Let W(0, M) = M. The set W(iA, M) consists of
all initial points such that the first player brings
system (5) into the set W((i— 1)A, M) within the
time duration A.

Before implementing the first step of the backward
procedure, we find a usable part (Isaaks, 1965) of
the boundary of M. It is defined by the formula

Fo =
c{zedM: minma,xél(Ax +u+v)<0,Vle K}
u€P veQ
Here K, is the cone of normals to the set M at z.

The principal notion of the algorithm is the no-
tion of “front”. Suppose the usable part of M
consists of one curve only. Let Fy = [g. The
front F; (Fig. 3) is the set of all points on the
boundary of W(iA, M) for which the minimum
guaranteeing time of the attaining the previous set
W((i — 1)A, M) is equal exactly to A. For other
points of the boundary of W(iA, M) the opti-
mal time is less than A. The line dW (1A, M)\ Fi



Fig. 3. Construction of the sets W(iA, M).

possesses of the barrier properties. The front F;
is designed using the previous front F;_;.

3.2 Ezamples of time-optimal problems

1. The canonical example of the time-optimal
problem in the theory of optimal control has the
following form:

T2
u,

Il

T
P lul< L.

Add the disturbance v to the first equation and
consider the differential game

T

1 o+ v
L2

u,

(6)

= lul<1, |vl<l

Let M be a small regular octagon with the cen-
ter at the point (0,2). Put A = 0.05. The sets
W(r, M) for the time instants 7 = k -4A, k =
1,55, are shown in Fig. 4. Denote by a, b the end-
points of the usable part I'y of M. The curves ac
and bd formed by the endpoints of fronts are bar-
riers. The value function is discontinuous on these
curves and also on the line 8M \ T'y. The line ¢f

Fig. 4. Differential game (6), solution at 7 = 11.
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Fig. 5. Differential game (6), solution at 7 = 20.

formed by the corners of fronts is the equivocal
(Isaaks, 1965) line. The set W(6.6, M) is con-
toured.The sets W(r, M), 7=k 204, k = 1,20,
are given in Fig. 5. For 7 > 20, the front’s end-
point 7 which moves along the upper barrier over-
takes another endpoint d. The upper barrier ceases
to grow when r coincides with d, and this barrier
(as well as the low barrier ac) is extended by an
equivocal line. Further, the complicated sequence
of low and upper equivocal lines occurs (Patsko,
1972; Filimonov, 1985).

2. Consider the oscillating system

T 0.35z; + 2+ v
To —0.8z, + u,

~2<u<l5,

(7)

—-6.1<v< -4,

The terminal set M 1s a regular octagon with the
center at the origin. The level sets W (r, M) for
r=kA, A=0.05 k=1, 189, are given in Fig. 6.
Up to 7 = 5.7, the front moves between the left
and right barrier lines emanating from the set M.
The left barrier terminates at 7 = 5.7. For 7 > 5.7,
the front begins to go around this barrier so that

Fig. 6. Level sets of value function in problem (7).



one of its endpoints slides along the outward side
of the barrier. At 7 = 8.15, the front collides with
the initial part of the left barrier from outside. For
T > 8.15, the left and right endpoints of the front
move towards each other along the left barrier.
The constructions are finished at 7 = 9.45. The
set, which the fronts fill up by the time 7 = 9.45,
is the set where optimal guaranteeing time less
than infinity. The first player can not guarantee
the transferring to M within a finite time from the
initial points lying outside this set.

A large number of computer calculated examples
for time-optimal problems are given in Turova
(1987), Patsko and Turova (1995).

4. CONCLUSION

In this paper, the short review of effective numer-
ical methods for linear differential games of small
dimension with fixed terminal time and convex
payoff function has been given. The main ideas
can be used for time-optimal games in the plane.
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