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Abstract: The paper deals with an algorithm of construction of level sets in linear 

differential games with fixed terminal time and convex payoff function depending on 

two components of the phase vector. Into this algorithm, the block for detection of 

singular points on the border of level set is included. Singular points give singular lines 

on the border of level set. Singular surfaces in the game space are collected using 

singular lines as skeleton. Examples of numerically calculated level sets and singular 

surfaces are represented.   Copyright © 1998 IFAC  
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1. INTRODUCTION  

The concepts of the alternating integral (Pontryagin, 

1967) and maximal stable bridge (Krasovskii and 

Subbotin, 1988) are the main ones in differential 

game theory. By means of these terms, the solvability 

set in a game of approach is usually described. For 

games with terminal payoff function, these terms 

define a level set of the value function. A system of 

level sets on a grid of values gives a representation of 

the value function in general. Information, obtained 

during construction of level sets, can be used for 

singularities analysis. Algorithmic description of this 

analysis is the main topic of the paper. 

A linear antagonistic differential game  
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with fixed terminal time T and convex payoff 

function ϕ , which depends on two coordinates 

ji xx ,  of the phase vector, is considered. The first 

(second) player governs the control u  (v) choosing it 

from the convex compact P  (Q) and minimizes 

(maximizes) the value of the function ϕ . 

It is known that the substitution )(),()( , txtTXty ji= , 

where ),(, tTX ji  is a matrix combined of two rows of 

the fundamental Cauchy matrix, provides the 

transformation to the equivalent differential game of 

the second order on phase variable. 

At the beginning of the 80's, the backward 

constructions were elaborated (Subbotin and Patsko, 

Eds., 1984; Taras'ev and Ushakov, 1985) for building 

level sets of the value function in linear differential 

game (1). Software for interactive investigation of 

level sets was created recently in cooperation with 

V.L.Averbukh, D.A.Yurtaev, E.A.Shilov, A.I.Zenkov 

from the Department of System Support of the 

Institute of Mathematics and Mechanics. 

As singular surfaces in theory of differential games, 

such sets in the game space are named where the 

optimal motions have some peculiarities (dispersion, 

refraction, junction, etc.). The classification of the 

singular surfaces was suggested by Isaacs (1965). 
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Necessary conditions, which characterize different 

types of singularity, were studied by Bernhard (1977) 

and Melikyan (1998).  

In the paper, an attempt of elaboration of algorithm 

for global construction of complete system of 

singular surfaces is made. With that, level set of the 

value function is the base object. On the border of a 

level set, singular lines are detected. They are 

determined by various peculiarities of optimal 

motions coming along the border surface of the level 

set. Singular surfaces are built on the base of singular 

lines taken from a system of level sets. Similar idea of 

constructing singular surfaces was realized for a 

concrete problem by Shinar and Zarkh (1996). 

Discussing algorithm for detection and classification 

of singularities is imbedded into the algorithm 

(Isakova, et al., 1984) for backward construction of 

level sets. The level sets can be built for arbitrary 

polyhedra P and Q. The algorithm for detection of 

singularities has been elaborated now only for the 

case of scalar controls of the first and second players 

(i.e., the sets P and Q are segments). 

2. CONSTRUCTING LEVEL SETS                        

OF THE VALUE FUNCTION  

Here, the algorithm (Isakova, et al., 1984) for 

constructing level sets of the value function is 

described. It is needful for understanding further 

section. 

2.1  Backward procedure 

Assume that the transfer from the game (1) with the 

payoff function ϕ  depending on two coordinates of 

the phase vector to the equivalent game 
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is already done. 

Let on the interval [0,T] the sequence of instants 

0  ,    ,  ,    ,  : 01 =∆−== + tttTtt iiNi KK  dividing the 

interval with a step ∆  is given. The interest is to find 

the time sections }),( :{)( 2 cytVRytW iic ≤∈=  of 

level set }),( :],0[),{( 2 cytVRTytWc ≤×∈=  of the 

value function V for the given value of parameter c. 

Replace the dynamics (2) by the piecewise-constant 

dynamics 
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Instead of the sets P and Q, let us consider their 

polyhedral approximations P, Q. Let ϕ̂  be the 

approximating payoff function. For any c, its level set 

})(ˆ:{ 2 cyRyc ≤∈= ϕM  is a convex polygon. 

The approximating game (3) is taken so that a game 

with simple motion dynamics (Isaacs, 1965), 

polyhedral convex control constraints and the convex 

polygonal target set appears for each step ],[ 1+ii tt  of 

the backward procedure. On the base of  

cNc t M=)(W , the game solvability set )( 1−Nc tW  

can be computed. Further, starting from )( 1−Nc tW , 

set )( 2−Nc tW  can be built, and so on. As a result, the 

collection of convex polygons is obtained, which 

approximate sections )( ic tW  of level set cW  of the 

value function in the game (2). 

Let P)()( ii tDt −=P , Q)()( ii tEt =Q . The support 

function ))(,( ic tll Wρ→  of the polygon )( ic tW  is 

the convex hull (Pschenichnyi and Sagaidak, 1970) of 

the function 

 ))(,())(,())(,(),( iiici tltltltl QP ρρργ ∆−∆+= W . 

The function γ ( , )⋅ t
i

 is positively-homogeneous and 

piecewise-linear. The property of local convexity of 

this function can be violated only at the boundary of 

linearity cones of the function ),( Q⋅ρ , i.e. at the 

boundary of cones generated by the normals to 

neighbor edges of the polygon Q . 

2.2  Algorithm of convex hull construction 

Let us agree to omit the argument it  in the notation 

of the function γ . 

The linearity cones of γ  are determined by the outer 

normals to the convex polygons )( ic tW , )( itP , 

)( itQ . Gathering the normals of these sets and 

ordering them clockwise, the collection L of the 

vectors is obtained. The collection of values γ ( )l  on 

the vectors l L∈  is denoted by Φ . The collections 

L, Φ  describe completely the function γ . 

The collection of the normals to )( itQ  ordered 

clockwise is denoted by S. Vectors from S are called 

“suspicious”. This name is connected with the fact 

that the function γ  is locally convex on the cones, 

which interior does not contain the normals of the set 

)( itQ . The violation of the local convexity can 

appear only on the cones which interior contains at 

least one normal of the polygon )( itQ . 

Let LL =)1( , Φ=Φ )1( , SS =)1( . The k+1 step of 

the multistep convexing process consists in replacing 

. 

. 
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the collections )(k
L , )(kΦ  by the collections 

)()1( kk
LL ⊂+ , )1()( +Φ⊂Φ kk . The collection )(kS  is 

also replaced by the new one )1( +kS . 

Describe now one step of the convexing process. 

Suppose that the angle between two neighbor vectors 

from the collection )(k
L  counted clockwise is less 

than π . Let )()( ll kγ→  be the piecewise-linear 

function determined by the collections )(k
L , )(kΦ . 

Since )1()1()( LLL kk ⊂⊂⊂ −
K , K⊂Φ⊂Φ − )1()( kk  

)1(Φ⊂K , then for any vector )(kLl ∈  the value 

)()( lkγ  is equal to )(lγ . 

Take some vector )(
*

kSl ∈  and check the local 

convexity of the function )(kγ  on the cone generated 

by the vector *l  and two its neighbor vectors −l  and 

+l  selected counterclockwise and clockwise from the 

collection )(k
L . In other words, check whether the 

inequality )( ** lyl γ≤′  is active in the triple of the 

inequalities )( −− ≤′ lyl γ , )( ** lyl γ≤′ , )( ++ ≤′ lyl γ . 

If the system of three inequalities is compatible, then 

(by virtue of the ordering the vectors −l , *l , +l ) only 

the middle one can be inactive. 

The algorithm of verification: find the intersection 

point *y  of the straight lines )( −− =′ lyl γ , 

)( ** lyl γ=′ , and then check the inequality 

)(* ++ <′ lyl γ . If it holds, the local convexity takes 

place. Otherwise, the local convexity is absent.  

In the first case, the vector *l  is taken away from the 

collection )(kS , and the remained set is denoted by 
)1( +kS . Let )()1( kk

LL =+ , )()1( kk Φ=Φ + . 

In the second case, two situations are distinguished. 

Let α  be the angle counted clockwise from −l  to +l . 

1. πα < . The vector *l  is taken away from the 

collection )(kS , and, simultaneously, the vectors −l  

and +l  are included into this collection (one of them 

or even both can be there already). Denote the new 

collection of the “suspicious” vectors by )1( +kS . The 

difference of the new collection )1( +k
L  from the 

collection )(k
L  is that the vector *l  is absent in 

)1( +k
L . When processing )(kΦ  to )1( +Φ k , the value 

)()( **
)( llk γγ =  is taken away. 

2. πα ≥ . The constructing is ceased.  

One step of the convexing algorithm has been 

described. 

The algorithm finishes at the step with the number j 

when for the first time ∅=)( jS , i.e. when the 

collection of the “suspicious” vectors becomes 

empty. It means that the function )( jγ , which 

corresponds to the collections )( j
L  and )( jΦ , is 

locally convex everywhere. Thus, the function )( jγ  is 

the convex hull of the function γ . In this case, let us 

denote the final collections )( j
L  and )( jΦ  as L  and 

Φ ,  respectively. 

The second variant of the termination is following: 

the angle α  between the vectors −l  and +l  becomes 

greater or equal to π  after elimination the checked 

vector *l  from the collection of the “suspicious” 

vectors at some step. It means that the convex hull of 

the function γ  does not exist, i.e. ∅=)( ic tW .  

(If  πα = , it is possible that )( ic tW  is a degenerate 

polygon, i.e. )( ic tW  is a point or a segment. Further 

constructions are ceased in this case also.)  

3. SINGULAR SURFACES 

In this section, it is supposed that the sets P and Q are 

segments. So, )( itP , )( itQ  are also segments in the 

space 21, yy  for any time instant it . 

Let assume in addition that the segments )( itP , 

)( itQ  are not parallel, and more than that, each of 

them is not parallel to neither one of edges of 

the polygon )( 1+ic tW . Let call this assumption 

“the non-parallelism condition”. 

3.1  Optimal motions and singular points 

On each time interval ],[ 1+ii tt , the approximating 

game (3) is the game with simple motions. The first 

player tries to transfer the system from the polygon 

)( ic tW  onto the polygon )( 1+ic tW , the second player 

tries to prevent it. Entering the discrimination of the 

second player, determine the optimal motions. 

Let us fix some arbitrary point 0y  on the boundary of 

the polygon )( ic tW . The second player control 

constant on the interval ],[ 1+ii tt  is called the optimal 

one if the first player can not direct the resulting 

motion from the point 0y  into the interior of the 

polygon )( 1+ic tW . For fixed optimal control of the 

second player, the first player control (also constant 

on the same interval) is called the optimal parrying 

one if the corresponding motion comes onto the 

boundary of the set )( 1+ic tW . Motion generated by 

optimal players’ controls is called the optimal one.  



 

146 

The control *v  satisfying the condition of maximum 

)}(:max{arg* itvvlv Q∈′=  is called the extremal 

control of the second player on the vector l. 

Similarly, the extremal control of the first player on 

the vector l is the control *u , which satisfies the 

condition of minimum :min{arg* ulu ′=  )}( itu P∈ . 

It is easy to see that if 0y  is an internal point of some 

edge of the polygon )( ic tW , then the constant control 

of the second player is optimal if and only if it is 

extremal on the normal vector to )( ic tW  at the given 

point. The optimal parrying control of the first player 

is extremal on the same vector. 

If 0y  is a vertex of )( ic tW , then two normals 

correspond to the vertex. The following statements 

describe the structure of the optimal controls.  

 Proposition 1. For any vertex of the polygon 

)( ic tW , the second player control, being extremal at 

least on one of two normal vectors at this vertex, is 

optimal. With that, the optimal parrying control of the 

first player is extremal on the same vector. 

A proof of this statement does not use a supposition 

of a scalar character of players’ controls. Hence, the 

condition of non-parallelism is not used also. In the 

following statement, these assumptions are essential.  

 Proposition 2. Let the players’ controls be scalar 

and the condition of non-parallelism is satisfied. Then 

for any vertex of the polygon )( ic tW , the totality of 

optimal controls of the second player consists only of 

the extremal controls on two normal vectors of the 

polygon )( ic tW  at this vertex. 

The point 0y  is called regular if the optimal motion 

emanating from this point is unique and generated by 

the extreme players’ controls. A point, which is not 

regular, is called the singular one. Here, “extreme” 

means that the constant control value is a boundary 

point of the segment )( itP  (or )( itQ ). 

3.2  Classification of singularities 

Below, the classification of singular points of the 

polygon )( ic tW  is described. It is based on the 

analysis of character of the optimal motions 

emanating from these points. For the classification, 

two marks are used. These marks are attached to 

normals participated in the process of convex hull 

construction of the function ),( it⋅γ . The mark FS 

(“former suspicious”) is added to normals which, 

during the convexing process, were denoted as 

“suspicious” ones, but, after the process, were 

remained in the final collection L  (this collection 

determines the polygon )( ic tW ). The mark PN  is 

added to normals, which were taken from the set 

)( itP . The classification is represented in the Table.  

The Table deals with the normals from the final 

collection L . Individual normals or pairs of neighbor 

ones are analyzed. Quantity of considered normals is 

shown in the first column. In the second column, the 

marks are represented whose presence is checked out 

on the considered normals. With that, if only one 

mark is shown for a concrete vector, then the second 

mark is supposed to be absent. The third column 

contains the additional condition. Marks in the 

second column, together with the satisfaction of the 

additional condition, determine the singularity type 

(which is shown in the sixth column) of the object 

from the forth column. Such object can be the 

polygon )( ic tW  vertex, which is incident for edges 

determined by normals (row 1), either the edge 

correspondent to the considered normal (row 3) or 

one of two shown normals (row 2). Inside the case of 

the row 1, a subdivision exists which is determined 

by the condition from the fifth column. Type of 

singularity is determined by the character of the 

optimal motions emanating from the marked point or 

points of the marked edge. The names of singularities 

are coordinated with ones used in the R.Isaacs' book.  

The term “P-normal” (“Q-normal”) means a normal 

taken from the set )( itP  ( )( itQ ). 

Table.  Singularities classification 
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singularity 

P-normal is         

not between 

Dispersal  

for 2
nd 

1 FS, FS 
Q-normal 

is strictly between 
Vertex 

P-normal  

is between 
Dispersal 
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Q-normal 
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P-normal 

edge 
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2 PN  
 

Edge 
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for 1
st 
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The term “dispersal” corresponds to the situation 

when two optimal motions emanate from the given 

point. One of these motions is generated by players’ 

controls, which are extremal on one of the regarded 

vectors with the mark FS. The second motion 

corresponds to the players’ controls extremal on the 

second vector with the same mark. With that, all 

controls are extreme in its segments. 

The term “equivocal” corresponds to the situation 

when from the vertex, determined by the normals 

with marks FS and PN +FS, two optimal motions go 

out. One motion is generated by players’ controls, 

which are extremal on the vector with the mark FS. 

The second one is generated by controls extremal on 

the vector with the mark PN +FS. With that, on the 

first motion, both controls get the extreme values. But 

on the second one, the control of the first player is not 

extreme. (It is namely the difference of the equivocal 

case from the dispersal one.) The latter motion comes 

to the vertex of the polygon )( 1+ic tW  where the cone 

generated by two normals contains the considered 

normal with the mark PN +FS. Each other point of 

the marked edge emanates only one motion, which 

comes to the mentioned vertex. 

The term “switching for the first player” corresponds 

to the case when only one optimal motion emanates 

from each internal point of the marked edge. An 

extreme control of the second player and non-extreme 

control of the first player generate it. The difference 

from the equivocal case is in the fact that only one 

motion emanates from both vertices of the edge. With 

that, the first player control gets one extreme value at 

one vertex of the edge, and the opposite value at 

another vertex. 

On different sides of the equivocal edge, both 

players’ controls change. In dispersal situation, either 

only the second player changes its control or both 

players  change their controls together. So, a special 

subdivision appears. In the switching situation, only 

the first player changes its control. 

It can be proved that any point on the boundary of the 

polygon )( ic tW  is regular if it is not a marked vertex 

or it is not included to any marked edge. And vice 

versa, any point, which is a marked vertex or 

included to a marked edge, is singular, except maybe 

the case when it is an endpoint of a marked edge.  

3.3  Constructing singular surfaces 

The data for the algorithm of singularity classification 

are accumulated during the process of the convex hull 

construction, and after that the algorithm of 

classification begins to work. Really, its work is 

reduced to the verification of the presence of 

situations described by rows of the Table. As a result, 

the collection of the points and intervals with 

description of type of their singularity is obtained for 

the current backward time section of the level set. 

For graphical presentation of the singular surfaces, a 

collection of level sets is calculated on the given grid 

of magnitudes of the value function, and, 

simultaneously, the singular points and edges are 

detected on each section of each level set. 

Constructing the singular surfaces on the base of the 

singular points and intervals is carried out in the 

program of visualization. 

Validity of the algorithm elaborated was verified on 

the test example from (Patsko and Tarasova, 1985). 

In that work, the singular surfaces appeared had been 

investigated analytically in detail. Results of our 

calculations coincide well with the results of the 

mentioned paper.  

4. EXAMPLE 

In this section, the examples of constructing level sets 

of the value function and singular surfaces are 

represented. The Gouraud shading is used for 

visualization of level set surface (“tube”) built from 

separate sections by triangulation. The surface is 

illuminated by dot radiant, which position can be 

changed by user. Now, visualization of singular 

surfaces is implemented by the simplest methods.  

The system is a conflict-controlled oscillator 
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Three level sets shown in Fig. 1 were calculated on 

the interval [0, 8] of the backward time τ  with the 

step 05.0=∆ . The sets are shown for values 

7.2  ,4.1  ,05.1=c . The internal tube terminates. 

The   outer tubes are visualized non-transparent.       

 
 

Fig. 1.  Three level sets for “oscillator” system. 



 

148 

To see the internal arrangement of the collection, two 

outer tubes are dissected by a plane parallel to the 

coordinate axes 1x , τ .  

In Fig. 2, the singular surfaces are shown for two 

view-points: Fig. 2a corresponds to a view from the 

axis 1x , Fig. 2b is a view from the axis τ . 

The surface closed to the axis τ  is dispersal. On 

some distance from the axis τ , the equivocal surface 

is situated. It comes into the switching surface for the 

first player and dispersal one for the second player. 

The “empty” parts round the time axis can be filled 

by calculations with smaller time step ∆  of the 

backward procedure. 
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Fig. 2.  Singular surfaces for “oscillator” system. 

a) View from the axis 1x . b) View from the 

axis τ . Notations: 1 – dispersal surface for the 

second player, 2 – switching surface for the first 

player, 3 – equivocal surface, 4 – dispersal 

surface. 


