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Abstract
The paper is devoted to the investigation of a time-optimal differential game

in which the pursuer possesses increased control capabilities comparing to the
classical homicidal chauffeur problem. Namely, the pursuer steers not only
the angular velocity of turn but can additionally change the magnitude of his
linear velocity. For such a new variant of the dynamics with non-scalar control
of the pursuer, a complete description of families of semipermeable curves is
given and the dependence of the structure of level sets of the value function on
a parameter that defines the bound on the magnitude of the pursuer’s velocity
is explored by numerical methods.

Key words. Time-optimal control, pursuit-evasion differential game, value
function, semipermeable curves, homicidal chauffeur game, numerical con-
struction.
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1 Introduction

One of the most well-known model problems in the theory of differential games
is the homicidal chauffeur problem proposed by R. Isaacs in 1951 (see [9]; [10]).
The pursuer P (a car) and the evader E (a pedestrian) are moving in the plane.
The dynamics are:

P : ẋp = w sin θ E : ẋe = v1

ẏp = w cos θ ẏe = v2

θ̇ = w u/R, |u| ≤ 1; |v| ≤ ρ.

(1)
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The linear velocity w of the car is constant. The angular velocity of rotation of
the linear velocity vector is bounded, which means that the radius of turn of the
car is bounded from below. The minimal turning radius is denoted by R.

The pedestrian is a non-inertial object that can change the value and direction
of his velocity v = (v1, v2)′ instantaneously. The maximal possible value of the
velocity is specified.

By a given circular neighborhood of his current geometric position, player P
tries to capture player E as soon as possible.

The book by R. Isaacs [10] contains some elements of solution of the homici-
dal chauffeur problem. A complete solution to the problem is given in works by
J. V. Breakwell and A. W. Merz (see [4]; [15]). Some other variants of differential
games with the homicidal chauffeur dynamics are investigated in [12]; [5]; [13];
[2]; [6]. In many papers (see, e.g., [1], [19]), the homicidal chauffeur game is used
as a test problem for evaluating the efficiency of algorithms for the computation
of the value function and optimal strategies.

The dynamics like the ones of playerP have very long history beginning with the
paper by A. A. Markov [14]. In particular, the model is utilized when considering
control problems related to the aircraft motion in a horizontal plane (see, e.g., [18]).

In papers on theoretical robotics, this model of dynamics is often referred to as
Dubins’ car because the paper [8] contains a theorem on the number and type of
switches of the open-loop control that brings the object from a given state with a
specified direction of the velocity vector to a terminal state for which the direction
of the velocity vector is also prescribed.

By normalizing the time and geometric coordinates, one can always achieve
w = 1, R = 1 in system (1). Therefore, system (1) takes the form

P : ẋp = sin θ E : ẋe = v1

ẏp = cos θ ẏe = v2

θ̇ = u, |u| ≤ 1; |v| ≤ ν.

(2)

Recent theoretical works on controlled cars use intensively the following
dynamics (see [20]; [11]):

ẋp = w sin θ
ẏp = w cos θ
θ̇ = u

|u| ≤ 1, |w| ≤ 1,

(3)

in which the car has two controls. The first control u steers the forward motion
direction h = (sin θ, cos θ)′ of the car. The second control w changes the magni-
tude of the linear velocity instantaneously. The velocity vector is directed along h
for w > 0, and opposite to h for w < 0. If w = 0, the object remains immovable.
Of course, instantaneous change of the velocity is a mathematical idealization. But
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following [20], p. 373, “for slowly moving vehicles, such as carts, this seems like
a reasonable compromise to achieve tractability”.

In papers on robotics, model (3) is called Reeds and Shepp’s car. Time-optimal
problems with Reeds and Shepp’s dynamics were considered in [20], [24], [3],
[22], [25], [23].

It seems quite natural to consider differential games where the pursuer has
additional control capabilities comparing with dynamics (2). Namely, the pursuer
can instantaneously change the value of his linear velocity within some bounds.
In other words, Isaacs-Dubins’ car turns into Reeds-Shepp’s type car. The present
paper is devoted to the investigation of such a differential game.

The purpose of this paper is to give a complete description of families of semiper-
meable curves for the problem considered and construct level sets of the value
function by numerical methods. In the paper [16], a similar investigation is done
by the authors for the classical homicidal chauffeur problem as well as for an
“acoustic” variant of the dynamics and for a conic surveillance-evasion game. The
present work continues the investigation in [16]. The difference is that, for the first
time, non-scalar control of the pursuer in the homicidal chauffeur game is consid-
ered. This makes the families of semipermeable curves and the structure of level
sets of the value function more complicated.

In papers on theoretical robotics, considerable attention is devoted to the ana-
lytical description of the boundary of reachable sets in the plane of geometric
coordinates for Dubins’ car model (i.e., a = 1) and for Reeds and Shepp’s model
(i.e., a = −1) (see [7], [21], [25], and references herein). Results on the construc-
tion of level sets of the value function presented in the paper can be interpreted as
a description of time-limited game reachable sets for a car with a given range of
the instantaneous change of the linear velocity magnitude. During the process of
motion, the car is subjected to a dynamic non-inertia disturbance that can distort
the velocity vector within prescribed bounds. If this disturbance becomes vanish-
ing small, the game reachable sets are transformed into usual reachable sets for the
control problem in the absence of disturbances. But even for a = 1 and a = −1
the analytical description of these sets is not simple. The authors do not know any
papers that study reachable sets for a �= ±1, and all the more so when dynamic
disturbances are presented.

2 Statement of the homicidal chauffeur game with a more
agile pursuer

Let the dynamics in original coordinates be:

P : ẋp = w sin θ E : ẋe = v1

ẏp = w cos θ ẏe = v2

θ̇ = u

|u| ≤ 1, a ≤ w ≤ 1; |v| ≤ ν.

(4)
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Figure 1: Movable reference system.

The constraint on the value of the angular velocity u does not depend on the
magnitude of the linear velocity. The value w of the linear velocity can change
instantaneously within the bounds a ≤ w ≤ 1, where a is a fixed parameter
that fulfills the condition a ∈ [−1, 1]. The parameter ν in the constraint on the
magnitude |v| of the velocity v = (v1, v2)′ of player E is assumed to be from the
interval [0, 1).

The objective of playerP is to capture playerE in a closed circular neighborhood
of radius r around his geometrical state as soon as possible.

Let us apply the reduced coordinates from ([10], pp. 29–30) which determine
the relative position of playerE in the rectangular coordinate system x, y with the
origin at P and the axis y directed along the vector h, i.e., along the velocity vector
of P computed for w = 1. The reduced coordinate system is explained in Fig. 1.

The dynamics (4) are transformed into:

ẋ = −y u+ vx

ẏ = x u− w + vy

|u| ≤ 1, a ≤ w ≤ 1, v = (vx, vy)′, |v| ≤ ν.

(5)

In the reduced coordinates, the objective of player P is to bring the state (x, y)
to a given terminal setM being a circle of the radius r with the center at the origin.

If a = 1, the dynamics (5) coincides with the homicidal chauffeur ones.
In the paper, numerically obtained level sets Wτ = {(x, y) : V (x, y) ≤ τ} of

the value function V (x, y) of the time-optimal differential game with dynamics (5)
will be presented. The structure of these sets depending on the parameter a will
be explored.

The level sets are computed using an algorithm for solving time-optimal differ-
ential games developed by the authors [16].
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3 Families of semipermeable curves

When solving differential games in the plane, it is useful to carry out a preliminary
study of families of smooth semipermeable curves that are determined by the
dynamics of the controlled system. The knowledge of these families for time-
optimal problems allows to verify the correctness of the construction of barrier
lines on which the value function is discontinuous.

A smooth semipermeable curve is a line with the following preventing property:
one of the players can prevent crossing the curve from the positive side to the
negative one, the other player can prevent crossing the curve from the negative
side to the positive one.

Below, the notations

P = {(u,w) : |u| ≤ 1, w ∈ [a, 1]}, Q = {v : |v| ≤ ν}

are used for the constraints on the controls of players P and E.

A. Consider the Hamiltonian

H(�, z) = min
ξ∈P

max
v∈Q

�′f(z, ξ, v), z, � ∈ R2. (6)

Here,

f(z, ξ, v) = p(z)u+ gw + v,

z = (x, y)′, ξ = (u,w)′, p(z) = (−y, x)′, g = (0,−1)′.

We study nonzero roots of the equationH(�, z) = 0, where z ∈ R2 is fixed. Since
the function � → H(�, z) is positively homogeneous, it is convenient to assume
that � ∈ E , where E is the circumference of unit radius centered at the origin.

Let �, �∗ ∈ E , � �= �∗. The notation � ≺ �∗ (� � �∗) means that the vector �
can be obtained from the vector �∗ using a counterclockwise (clockwise) rotation
through an angle smaller than π. In fact, this order relation will be used only for
vectors that are sufficiently close to each other.

Fix z ∈ R2 and consider roots of the equationH(�, z) = 0, � ∈ E . A vector �∗
is called the strict root “−” to “+” if there exist a vectorκ ∈ R2 and a neighborhood
S ⊂ E of the vector �∗ such that H(�∗, z) = �′∗κ = 0 and H(�, z) ≤ �′κ < 0
(H(�, z) ≥ �′κ > 0) for vectors � ∈ S satisfying the relation � ≺ �∗ (� � �∗).
Similarly, the strict root “+” to “−” is defined through replacing � ≺ �∗ (� � �∗)
by � � �∗ (� ≺ �∗). The roots “−” to “+” and “+” to “−” are called roots of the
first and second type, respectively. In the following, when utilizing the notation
� ≺ �∗ (� � �∗) we will keep in mind that � is from a neighborhood S like that
mentioned in the definition of the roots.

Denote by Ξ(�, z) the collection of all ξ ∈ P that provide the minimum in (6),
that is:

Ξ(l, z) = argmin{�′(p(z)u+ gw) : ξ ∈ P}.
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If �∗ is a strict root of the first (second) type, take ξ(1)(�∗, z) (ξ(2)(�∗, z)) equal
to argmin{�′(p(z)u+ g w) : ξ ∈ P(�∗, z)}, where � ≺ �∗ (� � �∗). Note that the
result does not depend on the choice of �. Let

v(1)(�∗) = v(2)(�∗) = argmax{�′∗v : v ∈ Q}.

Since Q is a circle, v(i)(�∗), i = 1, 2, is a singleton.
If �∗ is a root of the first type, consider the vectograms f(z, ξ(1)(�∗, z),Q), and

f(z,P , v(1)(�∗)). We have

�′f(z, ξ(1)(�∗, z), v) ≤ max
v∈Q

�′f(z, ξ(1)(�∗, z), v) = H(�, z) ≤ �′κ < 0 (7)

for v ∈ Q and � ≺ �∗. For � � �∗, it holds:

max
v∈Q

�′v ≤ �′v(1)(�∗) + �′κ/2

because κ is orthogonal to �∗ (and hence to v(1)(�∗)), and �′κ > 0. Thus,

H(�, z) ≤ min
ξ∈P

�′f(z, ξ, v(1)(�∗)) + �′κ/2.

The last inequality yields

�′f(z, ξ, v(1)(�∗))≥min
ξ∈P

�′f(z, ξ, v(1)(�∗))≥H(�, z)−�′κ/2 ≥ �′κ/2 > 0 (8)

for ξ ∈ P and � � �∗.
Relations (7) and (8) ensure that the vectograms f(z, ξ(1)(�∗, z),Q), and

f(z,P, v(1)(�∗)) do not contain zero and are located with respect to the direction
of the vector f (1) = f(z, ξ(1)(�∗, z), v(1)(�∗)), as it is shown in Fig. 2a.

Therefore, the existence of a strict root �∗ of the first type at a point z ensures
together with taking the control ξ(1)(�∗, z) (v(1)(�∗)) by player P (E) that the
velocity vector f(z, ξ(1)(�∗, z), v) (f(z, ξ, v(1)(�∗))) is directed to the right (to the
left) with respect to the direction of the vector f (1) for any control v (ξ) of player
E (P ). Such a disposition of the vectograms means that player P (E) guarantees
the trajectories do not go to the left (to the right) with respect to the direction
of f (1). The direction of the vector f (1) is called the semipermeable direction of
the first type. The vector f (1) is orthogonal to the vector �∗, its direction can be
obtained from �∗ by a clockwise rotation through the angle π/2.

Arguing similarly, we obtain that the existence of a strict root �∗ of the second
type at a point z ensures together with taking the control ξ(2)(�∗, z) (v(2)(�∗))
by player P (E) that the velocity vector f(z, ξ(2)(�∗, z), v) (f(z, ξ, v(2)(�∗)))
is directed to the left (to the right) with respect to the direction of the vector
f (2) = f(z, ξ(2)(�∗, z), v(2)(�∗)) for any control of player E (P ). This means
that player P (E) guarantees the trajectories do not go to the right (to the left)
with respect to the direction of f (2). The direction of the vector f (2) is called
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Figure 2: (a) Semipermeable direction of the first type. (b) Semipermeable direction of
the second type.

the semipermeable direction of the second type. The vector f (2) is orthogonal
to the vector �∗, its direction can be obtained from �∗ by a counterclockwise
rotation through the angle π/2 (see Fig. 2b).

Thus, there is a significant difference in the location of the vectograms for strict
roots of the first and second type.

B. We distinguish semipermeable curves of the first and second types. A smooth
curve is called semipermeable of the first (second) type if the direction of the
tangent vector at any point along this curve is the semipermeable direction of the
first (second) type.

The side of a semipermeable curve that player P (E) can keep is called positive
(negative). The positive (negative) side of a semipermeable curve of the first type
is on the right (on the left) when looking along the semipermeable direction. The
opposite is valid for semipermeable curves of the second type.

Figure 3 illustrates the role of semipermeable curves of the first and second
type in solving a game of kind with the classical homicidal chauffeur dynamics,
the restriction Q is of a rather large radius. The objective of player P is to bring
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Figure 3: Semipermeable curves of the first and second type and capture set.

trajectories to the terminal set M which is a circle centered at the origin, the
objective of playerE is opposite. Denote by c and d the endpoints of the usable part
[10] on the boundary ofM . The semipermeable curves of the first and second type
that are tangent to the setM and pass through the points c and d, respectively, define
completely the capture set B of all points for which guaranteed time of attaining
M is finite. The curves are faced towards each other with the positive sides.

C. In Fig. 4, the families of semipermeable curves for the classical homicidal
chauffeur dynamics are presented. There are families Λ(1),1 and Λ(1),2 of the first
type and families Λ(2),1 and Λ(2),2 of the second type. The second upper index
in the notation Λ(i),j indicates those of two extremal values of control u that
corresponds to this family: j = 1 is related to curves which are trajectories for
u = 1; j = 2 is related to curves which are trajectories for u = −1. The arrows
show the direction of motion in reverse time. Due to symmetry properties of the
dynamics, all families can be obtained from only one of them (for example, Λ(1),1)
by means of reflections about the horizontal and vertical axes.

The construction of mentioned four families of smooth semipermeable curves
can be explained as follows.

Let a = 1 in system (5). Assign the set

B∗ = {(x, y) : −y + vx = 0, x− 1 + vy = 0, v ∈ Q}

to the control u = 1, and the set

A∗ = {(x, y) : y + vx = 0, −x− 1 + vy = 0, v ∈ Q}

to the control u = −1. Hence,B∗ is the set of all points in the plane x, y such that
the velocity vector of system (5) for w = 1 vanishes at u = 1 and some v ∈ Q.
We have A∗ = −B∗.

Consider two tangents to the setsA∗, B∗ passing through the origin (see Fig. 5),
and mark arcs a1a2a3 and b1b2b3 on ∂A∗, and ∂B∗, respectively.
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Figure 4: Families of smooth semipermeable curves for the classical homicidal chauf-
feur dynamics.
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Figure 5: Auxiliary arcs generating the families of smooth semipermeable curves for the
classical homicidal chauffeur dynamics.

Attach an inextensible string of a fixed length to the point b1 and wind it up on
the arc b1b2b3. Then wind the string down keeping it taut in the clockwise direction.
The end of the string traces an involute, which is a semipermeable curve of the
family Λ(1),1. A detailed proof of this fact is given in [17]. The complete family
Λ(1),1 is obtained by changing the length of the string.
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∗B−

∗
0
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Figure 6: Auxiliary arcs generating the families of smooth semipermeable curves for
dynamics (5); a = 0.33, ν = 0.3.
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Λ(1),1,1−

Figure 7: Three families of smooth semipermeable curves of the first type corresponding
to u = 1 for dynamics (5); a ≥ −ν, ν = 0.3.

The family Λ(2),2 is obtained as the collection of the counterclockwise-involutes
of the arc a1a2a3 by attaching the string to the point a3 .

The family Λ(2),1 is generated by the clockwise-involutes of the arc b1b2b3
provided the string is attached to the point b3.

The family Λ(1),2 is composed of the counterclockwise-involutes of the arc
a1a2a3 provided the string is attached to the point a1.

D. Families of semipermeable curves corresponding to dynamics (5) are
arranged in a more complicated way (see Figs. 6–10).

Figure 6 shows auxiliary lines used for the construction of the families. Here,
A+

∗ and B+
∗ are the circles of radius ν with the centers at the points (−1, 0) and

(1, 0), respectively. The circle A+
∗ (B+

∗ ) consists of all points (x, y) such that the
right-hand side of system (5) becomes zero for u = −1 (u = 1), w = 1, and
some v ∈ Q. The only difference in the definition of the circle A−

∗ (B−
∗ ) is that

w = a instead of w = 1 is used. For Fig. 6, a = 0.33, ν = 0.3. Six thick arcs
on the boundaries of the circles are the only lines utilized for the construction of
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Figure 8: Three families of smooth semipermeable curves of the second type corresponding
to u = 1 for dynamics (5); a ≥ −ν, ν = 0.3.
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Figure 9: Auxiliary arcs generating the families of smooth semipermeable curves corre-
sponding to u = 1 for dynamics (5); a = −0.6, ν = 0.3.
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Figure 10: Four families of smooth semipermeable curves of the first type corresponding
to u = 1 for dynamics (5); a = −0.6, ν = 0.3.
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families of smooth semipermeable curves.
In the problem considered, for a ≥ −ν, there are three families Λ(1),1,1+,

Λ(1),1,1−, and Λ(1),1,2 of semipermeable curves of the first type that correspond
to u = 1 (instead of one family in the classical homicidal chauffeur problem).
The families are drawn in Fig. 7. Every one of these three families consists of
the involutes of one of the three arcs. The families Λ(1),1,1+ and Λ(1),1,2 overlap.
There is also an overlap between the families Λ(1),1,1− and Λ(1),1,2 over the part
of the family Λ(1),1,1− in the region above the line y = −ν. If a → 1, the union of
three families gives the family Λ(1),1 of the classical homicidal chauffeur problem.

Figure 8 shows the families Λ(2),1,1+, Λ(2),1,1−, and Λ(2),1,2 of the second type
corresponding to u = 1. They are obtained by the reflection of corresponding
families from Fig. 7 about the horizontal axis and by changing the direction of
arrows. Families Λ(2),2,1+, Λ(2),2,1−, and Λ(2),2,2 can be obtained by the reflection
of corresponding families from Fig. 7 about the vertical axis (the direction of
arrows does not change).

Families Λ(1),2,1+, Λ(1),2,1−, and Λ(1),2,2 of the first type can be obtained by
the reflection of families Λ(2),1,1+, Λ(2),1,1−, and Λ(2),1,2 about the vertical axis.

For −1 ≤ a < −ν, the family Λ(1),1,2 splits into two families: Λ(1),1,2− and
Λ(1),1,2+. Everything else is similar to the case a ≥ −ν. The lines that define the
families of smooth semipermeable curves corresponding to u = 1 are depicted in
Fig. 9. In Fig. 10, four families of the first type for u = 1 are presented.

4 Level sets of the value function

In this section, results of the computation of level sets Wτ of the value function
V (x, y) for time-optimal differential game with dynamics (5) will be presented.
The collection of all points (x, y) ∈ ∂Wτ such that V (x, y) = τ is called the
front corresponding to the reverse time τ . The computational procedure [16] for
the construction of the level sets runs backward in time on the interval [0, τf ]. The
value of τf is given below in the figure captions. For all figures, the horizontal axis
is x, the vertical axis is y.

It is supposed in all examples that the set M is a circle of radius r = 0.3 with
the center at the origin, and the control u is bounded as |u| ≤ 1.

The following 6 variants of parameter values will be considered:

1. a=1, 2. a = 0.25, 3. a = −0.1, 4. a=−0.4, 5. a = −0.6, 6. a = −1.

The variants are ordered by decreasing value of the parameter a. Remind that the
constraint on the control w of player P is a ≤ w ≤ 1. Therefore, the capabilities
of player P increase with the decrease of value a.

In every variant, the constraint on the control of player E is |v| ≤ ν = 0.3.
In the computations, the circleM is approximated by a regular 30-polygon, the

circular constraint of player E is replaced by a regular octagon.
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A. Let now describe level sets of the value function.
1) Figure 11 presents level sets Wτ for the classical homicidal chauffeur prob-

lem, variant 1. The value function is discontinuous on two barrier lines: the right
barrier line is a semipermeable curve of the family Λ(1),1, the left one is a semiper-
meable curve of the family Λ(2),2 (see Fig. 4). The right barrier terminates at the
lower tangent to the circle B∗ passing through the origin, the left one terminates
at the lower tangent to the circleA∗. After the termination, the barriers are contin-
ued by the lines formed of the corner points on the fronts of level sets. The value
function is not differentiable on these lines.

-4

-2

 0

 2

 4

 6

 8

-8 -6 -4 -2  0  2  4  6  8

M

y

x

Figure 11: Level sets Wτ for the classical homicidal chauffeur problem; τf = 10.3.

We can conclude about lines of discontinuity of the value function by analyzing
the families of semipermeable curves before the construction of level sets of the
value function. The knowledge of these families is utilized for the verification of
numerical computation of level sets.

After bending round the right and left barriers, the right and left parts of the
front meet on the vertical axis at time τ = 7.82. A closed front occurs and a hole
is generated which is completely filled out at time τ = 10.3.

2) If a ≥ −ν = −0.3, then there is only one usable part on the boundary ∂M
for the chosen radius r = 0.3 of the terminal circle M . It is located in the upper
part of ∂M . Its right (left) endpoint is the intersection point of ∂M with the upper
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Figure 12: Long barrier emanating from the point c.

tangent toB+
∗ (A+

∗ ) passing through the origin. In Fig. 12, c and d are the endpoints
of the usable part (from which the fronts are emitted in the backward procedure).

For chosen values r = 0.3 and ν = 0.3, there exists a value ā ∈ (0, 1) of the
parameter awhich separates the case of a “long” barrier from the case of a “short”
one. The barrier lines emanate from the points c and d of the usable part. Due to the
symmetry of the solution with respect to the vertical axis, one can only consider the
right barrier emanating from the point c. The right long barrier is a semipermeable
curve obtained by a smooth junction of a curve of the family Λ(1),1,1+ going
backward in time from the point cwith a curve of the family Λ(1),1,2 and, later on,
with a curve of the family Λ(1),1,1− (see Fig. 7). The first junction can occur on the
horizontal line y = ν = 0.3 (denote it byCD), the second one is on the horizontal
line y = −ν = −0.3 (denote it by FL). The right and left long barriers are shown
in Fig. 12. The right short barrier consists of a curve of the family Λ(1),1,1+ going
backward in time from the point c up to the line CD.

If the intersection point s of the last-mentioned semipermeable curve with the
lineCD is to the left from the point g = (a, ν)′, being a tangent point of the lineCD
and the setB−

∗ , then the barrier can be continued by a curve of the family Λ(1),1,2.
Therefore, we obtain a long barrier. If the point s is to the right from g, there is no
any extension. In this case, a short barrier occurs. The coincidence s = g defines
a critical value ā. The transient case a = ā is of great theoretical importance.

The value a = 0.25 in variant 2 is close to ā. The results of the computation of
setsWτ for this variant are presented in Fig. 13. The obtained right and left barriers
are long. Since in the computation the constraint |v| ≤ ν is a regular octagon,
the sets B+

∗ , B−
∗ , A+

∗ , and A−
∗ are octagons as well. Figure 14 shows an enlarged

fragment of Fig. 13 with additionally drawn sets A+
∗ and A−

∗ .
3) Figure 15 presents computation results for variant 3. Enlarged fragments of

Fig. 15 are shown in Figs. 16 and 17.
Here, the right barrier that emanates from the right endpoint c of the usable

part on ∂M belongs to the family Λ(1),1,1+. In the notations of Fig. 12, the point
s is to the right of the point g that results in the short barrier. The left barrier
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Figure 13: Level sets Wτ for differential game (5); a = 0.25, τf = 6.7.
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Figure 14: Enlarged fragment of Fig. 13.

which is symmetrical to the right one with respect to the vertical axis belongs to
the family Λ(2),2,1+. The termination of barriers on the horizontal line y = 0.3
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Figure 15: Level sets Wτ for differential game (5); a = −0.1, τf = 4.89.

is completely in accordance with the results that follow from the knowledge of
families of semipermeable curves.

After bending round the barrier lines, the ends of the front go down along the
negative sides of the barriers and then move along the boundary of the terminal
set. This is well seen in Figs. 16 and 17. Parts of the front near the right and
left sides of the terminal set and far from it move with different velocities, which
yields the generation of the right and left singular lines where the value function
is non-differentiable.

Values τf given in the captions of Figs. 11, 13, and 15 correspond to the time
instants at which the “inner hole” is filled out with the fronts.

4) Consider variant 4 (see Figs. 18 and 19). For this variant, two usable parts on
∂M arise. The upper usable part is larger than the lower one.

The right and left barriers emanating from the endpoints of the upper usable
part are semipermeable curves of the families Λ(1),1,1+ and Λ(2),2,1+, respectively.
They terminate, as expected, on the horizontal line y = 0.3. Outside set M , the
value function is discontinuous on these two lines only.

The ends of the fronts which propagate from the lower usable part move very
slowly along ∂M (see Fig. 20a). At some time, a local non-convexity with a kink
is formed on a going down front. This kink rises upwards and after some time it
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Figure 16: Enlarged fragment of Fig. 15.
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Figure 17: One more enlarged fragment of Fig. 15.

reaches the endpoint of the front on ∂M . In fact, a new endpoint of the front that
moves along ∂M faster than before arises. Then, after some time, this endpoint
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Figure 18: Level sets Wτ for differential game (5); a = −0.4, τf = 3.
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Figure 19: Enlarged fragment of Fig. 18.

meets the endpoint of the front going down along ∂M . A closed front is formed
(Fig. 19).
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Figure 20: Continuous and discontinuous value function. (a) Enlarged fragment of Fig. 19,
a = −0.4. The region of fronts accumulation is shown. The value function is continuous
outside set M . (b) Level sets for a = −0.425. The value function is discontinuous outside
set M on the barrier line ek.

5) For a ≤ ã = −0.3
√

2, there are barrier lines that emanate from the endpoints
of the lower usable part and terminate at the horizontal straight line y = −ν =
−0.3. The left barrier line is a semipermeable curve of the family Λ(1),1,2−, the
right one is a semipermeable curve of the family Λ(2),2,2−.

Figure 20b computed for a = −0.425 shows the lower fronts bending round the
left barrier line. This can be compared with Fig. 20a computed for a = −0.4. At
first sight, the pictures are very similar. However, the value function in Fig. 20b
is discontinuous on the barrier line ek, while the value function in Fig. 20a is
continuous in a similar region below the set M .

The behavior of lower fronts for values a close to ã initiates the following
question which, to our opinion, can hardly be answered based on numerics only. Is
it true that for a = −0.3

√
2 the endpoints of the lower fronts stay at the endpoints

e, f of the usable part till some time τ̂ > 0 and only for τ > τ̂ begin to go down
along the barrier lines?

Figures 21 and 22 show level sets of the value function for a = −0.6 (variant 5).
Fronts generated by the upper and lower usable parts encounter at some time
τ∗ = 1.41 (see Fig. 22). For τ > τ∗, the computation continues from the
closed front.

6) For a = −1 (variant 6 being shown in Fig. 23), the computed sets are
symmetrical with respect to both horizontal axis x and vertical axis y. Two short
upper barrier lines like in variants 3, 4, and 5 are present. The lower barrier lines
are symmetrical to the upper ones with respect to the axis x.

Note that, for ν = 0, the set Wτ coincides with the reachable set G(t,M) of
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Figure 21: Level sets Wτ for differential game (5); a = −0.6, τf = 3.5.
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Figure 22: Enlarged fragment of Fig. 21.

system (3) in the plane of geometric coordinates at time t = τ with M being
the initial set and with initial orientation of the forward motion direction h along
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Figure 23: Level sets Wτ for differential game (5); a = −1, τf = 4.
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Figure 24: Enlarged fragment of Fig. 23.

the vertical axis. For Reeds and Shepp’s model and the point set M = {0}, the
boundary∂G(t, {0}) is well investigated analytically in [21]. Besides, the structure
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of open-loop controls u(·),w(·) that bring the system to ∂G(t, {0}) is established.
The sets Wτ shown in Fig. 23 are similar to the ones in Fig. 7 from [21]. But, to
our opinion, the principal, and important fact for applications is that the optimal
guaranteed time (the value function V (x, y)) is not continuous if disturbances are
presented (i.e., ν > 0). If ν = 0, the value function is continuous.

The numerical procedure utilized for the computation of all level sets presented
above uses an automatic adjustment of the step width Δ of the backward construc-
tion. The initial value of Δ, which is usually equal to 0.01, can decrease up to 10
times in the course of construction. The fronts are shown with the time step 0.1 in
Figs. 11, 13, 14, 18–20, and with the time step 0.05 in Figs. 15–17, Figs. 21–24.

B. In Fig. 25, level setsWτ computed for τ = 1 are presented. Five sets are shown
that correspond to the following values of parameter a: 1, 0.25,−0.1,−0.6,−1.
One can see how the setWτ grows with the decrease of a, i.e., with the increasing
length of the interval [a, 1] from which the control w is being chosen. For a =
1, 0.25,−0.1, the set Wτ consists of an upper piece only; for a = −0.6,−1, a
lower piece is added. The upper and lower pieces are symmetrical for a = −1.

Level sets W (τ) for τ = 3 are given in Fig. 26.
Figures 25 and 26 demonstrate not only the dependence of the size of sets Wτ

on the parameter a. The boundary of every set from Fig. 25 (τ = 1) and every set
from Fig. 26 (τ = 3) contains the common upper smooth arcmn. This means that
the optimal feedback control of player P for initial points on mn is the same as
in the classical game, i.e., w ≡ 1. Any other common arcs on ∂Wτ do not exist.
Therefore, for those initial points on ∂Wτ which do not belong to the arc mn, the
optimal control of player P should utilize both the value w = 1 and w = a. The
construction of optimal feedback control of player P on the base of level sets of
the value function is a separate question which is not discussed in this paper. For
Reeds and Shepp’s problem (i.e., for a = −1), the optimal feedback control in the
absence of disturbances (i.e., for ν = 0) has been constructed in papers [22], [23].

C. Figure 27 demonstrates the discontinuity curves of the value function depend-
ing on the parameter a. As it was already mentioned, the upper usable part defined
by the points c and d on the boundary of the circle M is the same for all values
a ∈ [−1, 1]. The right and left barrier lines emanate from the points c and d. For
a ∈ [a, 1], where a ≈ 0.25, we have long barriers (Fig. 27a). For a ∈ [−1, a),
the barriers are short (Fig. 27b). The short barriers terminate on the horizontal line
y = ν = 0.3. For a ∈ [−0.3, 1], the lower part of the boundary of the circle M
between the points c and d is a discontinuity curve of the value function.

If a ∈ [−1,−0.3), there is a lower usable part ef (Fig. 27b) on the boundary of
the circle M , which increases with decreasing a. The arcs cf and de on ∂M are
discontinuity curves of the value function. If a ∈ (ã,−0.3), where ã = −0.3

√
2,

barrier lines emanating from the points e and f do not exist. For a ∈ [−1, ã], there
is a barrier line being a first type semipermeable curve of the family Λ(1),1,2− that
emanate from the left endpoint e of the usable part. The curve terminates on the
horizontal line y = −ν = −0.3. The right barrier emanated from the point f is
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Figure 25: Level sets Wτ , τ = 1, of the value function for various magnitudes of the
parameter a.

symmetrical to the left one with respect to the vertical axis and is a second type
semipermeable curve.

5 Conclusion

It is known that the optimal control problems with dynamics describing an inertial
car (see, e.g., [11]) are very complicated to study. This is why simplified models
are widely used in mathematical literature. In particular, Reeds and Shepp’s model
is popular enough.

It is assumed in this model that the car can change instantaneously not only the
angular velocity but also the direction of its motion to the opposite one without
any loss in the velocity.

Therefore, we have two controls. The first control u is bounded as |u| ≤ 1
and defines the angular velocity, the second control w = ±1 specifies the direc-
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Figure 26: Level sets Wτ , τ = 3, of the value function for various magnitudes of the
parameter a.

tion of motion. Using the convexification of vectograms, we can replace the con-
straint w = ±1 by the constraint |w| ≤ 1. Thus, we can speak about an instan-
taneous change of the linear velocity in the range from −1 to +1 for Reeds and
Shepp’s model.

It is supposed in the paper that control w which instantaneously changes the
magnitude of the linear velocity is restricted as a ≤ w ≤ 1. Here, a ∈ [−1,+1]
is the parameter of the problem. For a = 1, we have the car with the constant
magnitude of the linear velocity. For a = −1, we obtain Reeds and Shepp’s car.

Using the above-mentioned dynamics of the car, we investigate a differential
game which is similar to the famous homicidal chauffeur game by R. Isaacs. The
objective of the player P that controls the car is to catch as soon as possible a non-
inertial pedestrian E in a given circular neighborhood of P -state. For a = 1, this
game becomes the classical one.

After we applied Isaacs’ transformation, the construction of level sets of the
value function is run in the two-dimensional plane of reduced coordinates. The
level sets are computed using the algorithm developed by the authors for time-
optimal differential games in the plane. This algorithm enables to construct the
level sets of the value function (in other words, the fronts or isochrones) with good
accuracy, which allows us to investigate in detail the regions of accumulation of
fronts, the discontinuity lines of the value function, and the behavior of fronts near
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Figure 27: Discontinuity lines of the value function depending on the parameter a;
(a) a ≥ a ≈ 0.25; (b) a < a.

such lines. In the paper, the structure of level sets is analyzed depending on the
parameter a .

Additionally and independently on the construction of level sets of the value
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function, the families of smooth semipermeable curves defined by the dynamics
of the problem are described in the plane of reduced coordinates. The knowledge
of these families enables to validate the discontinuity lines computed in the course
of run of the algorithm for the construction of level sets. Since the families of
semipermeable curves depend on the dynamics only, they can be also used in other
problems with mentioned dynamics, for example, in time-optimal problems with
objectives of the players that are different from those considered in this paper.

Acknowledgements

This research was supported by RFBR Grants Nos. 06-01-00414 and 07-01-96085.

References

[1] Bardi M., Falcone M., Soravia P., Numerical methods for pursuit-evasion
games via viscosity solutions, in M. Bardi, T.E.S. Raghavan, T. Parthasarathy
(eds.), Stochastic and Differential Games: Theory and Numerical Methods.
Annals of the International Society of Dynamic Games 4, Birkhäuser, Boston,
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