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Antagonistic linear differential games with a fixed instant of termination and a continuous terminal pay function are considered.
The control action of the first (minimizing) player is assumed to be scalar and bounded in modulus. The vector control of the
second player is restricted by a geometrical constraint. An assertion is proved concerning the sufficient condition and, when this
is satisfied, the optimal negative feedback positional control of the first player can be specified using the switching surface which
separates the space of the game into two parts, in each of which there is its own limit value of the control action. The proposed
control procedure is stable with respect to inaccuracies in the numerical construction of the switching surface. © 2004 Elsevier
Ltd. All rights reserved. A

1. FORMULATION OF THE PROBLEM AND THE MAIN RESULT

Preliminary description of the problem. Suppose a linear differential game with a fixed instant of termina-
tion ¥ is described by the relations

¥(0) = BP@uy + V)
ynerR, uwmisp, vneo”; vy o))

We stipulate that the control action u(t) of the first player is scalar and bounded in modulus by the number
i > 0. We assume that the set Q, which constraints the control action v(t) of the Second player, is
convex compactum in a finite-dimensional space. Hence, BY )(t) is a column-vector and C*! (t) is a matrix
of the correspondlng dimensions. The functions BY, C) are assumed to be piecewise-continuous.
Suppose ¥V : R" — R is a continuous pay function. The first player minimizes the value of y( ¥(9))
while the interests of the second player are the opposite.

We will call the game (1.1) the initial game. The notation referring to it is given the superscript (1).
We stipulate that the initial instants #, belong to the interval T = [0, 9], where ¥; < 9. Suppose
Z = T x R" is the space of the game. We call a measurable function of the time ¢ — u(t) (r — v(z)),
which satisfies the constraint |u(f)| < p (v(£) € QW) for any ¢, a permissible preset control u() (v(+))
of the first (slecond) player. We will denote the set of all perm1551ble preset controls v(-) of the second
player by L(

Following the well-known procedure [1], we will consider the arbitrary functions (¢,x) — U(t, x), defined
in the set Z with numerical values which are bounded in modulus by the number p, as the permissible
positional strategies of the first player. We will denote by the symbol y¢ ( to, %o, U, A, 0(")) the stepwise
motion of system (1.1) from the position (f, xg), when the first player uses a strategy U in a discrete
control scheme [1] with a step size A > 0, while a control v(-) € L is a realized for the second player.

We put

(1.1)

T, x0, U, 8) = sup ¥V V(95 10, x4, U, A, 0(-)))
v(ye LV
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The quantity T)(zy, x,, U, A) has the meaning of a guarantee which offers the first player a strategy U
for the initial position (fy, Xo) in the discrete control scheme with a step size A. The best guarantee for
the first player in the case of the initial position (¢, x¢) is defined by the formula

(20, %) = minTim TV (1, xo, U, A)
U A-0

where lim denotes an upper limit. It has been shown [1] that a minimum with respect to U is reached,
that is, an optimal strategy exists. At the same time, a dependence of the optimal strategy of the first
player on the initial position (#, x¢) is not ruled out.

It is well known [1, 2] that the best guaranteed result T\)(zy, x,) is identical with the symmetrically
determined best guaranteed result of the second player. The quantity F(I)(to, Xg) is therefore also called
the value of the value function at the point (£, xg).

It will be shown below that, in the case of a certain additional condition in game (1.1), a universal,
optimal strategy U™ of the first player exists which is stable with respect to errors in its numerical
specification.

Universality means that the strategy U* is optimal for all initial positions (¢, xo) € Z. We stress that
we are talking of universality in a “rigorous” sense: the strategies being considered are solely functions
of the arguments ¢ and x. In the class of strategies which additionally depend on a certain “accuracy
parameter”, the existence of optimal, universal strategies has been established earlier [3] for an extensive
class of problems.

The universal optimal strategy (¢, x) — U™ (¢, x) will be determined using a “switching surface” which
divides up the space of the game Z into two parts: on one side the control u takes the value —u and, on
the other side, the value +p. In the switching surface itself, the optimal value of the control u can take
any value from the interval [-u, p].

The question of the existence of universal optimal strategies in differential games has been concisely
discussed [1, p. 48] and became sharper after the appearance of the paper [4] in which an example of
a game problem was cited where an universal optimal strategy does not exist. It has been shown {5, 6]
that a universal optimal strategy of the first player exists in the case of linear differential games of the
form of (1.1) with a convex pay function and that it can be specified using the switching surface. The
stability of this strategy was based [7] on an assumption concerning the boundedness of the “velocity
of rotation” of the vector BU(r).

It has been established in [8, 9] that, if the set Q! is an interval (that is, the control action v is scalar)
then a universal optimal strategy of the second (maximizing) player exists and it can also be specified
using the switching surface. However, this strategy does not possess the property of stability.

In this paper, the results obtained in [7] are reinforced: the condition of the convexity of the pay
function is relaxed and the assumption concerning the boundedness of the “velocity of rotation” of the
vector B(i)(z‘) is removed. As in [7], the following scheme of reasoning issued. Guided by computer
syntheses, we replaced the initial differential game with a convenient approximating game for which
we can construct a certain u-stable [1, 2] function or even the value function of the game. On processing
this function, we obtain the switching surface. We now use this resulting switching surface in the initial
differential game in order to specify the universal strategy of the first player. We estimate the guarantee
of the first player which it ensures, using the universal strategy constructed. As a consequence, we obtain
a result from this estimate which holds true for the universal, optimal, stable strategy in the game (1.1).

We now make a remark concerning the description of the dynamics of a linear differential game in
the form of (1.1). A special feature of this description is the fact that the phase variable does not enter
into the right-hand side. Suppose a linear differential game with a fixed instant of termination % has
the form

¥(1) = A(O)y() + B(nu(r) + C(r)v(r)
y(rye R™, lu@l<p, ve oV yy(®)

We assume that the pay function vy is solely determined by the values of certain # coordinates, 7 < m,
of the phase vector at the instant of termination. Then, the transition to the form (1.1) is achieved [1,
p. 160] using a standard transformation y(¥) = X,, ,(9, t)y(t), where X, ,,,(9, £) is an n x m matrix
composed for the corresponding r rows of the fundamental Cauchy matrix for the system y(¢) = A(®)y(?).
In this case

BV(1) = X, .(8,0B(1), V@) =X, (8,0C@), 7y ®) = v(y(d))
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Approximating game. Together with game (1.1), we consider a further differential game

() = BP@yu(n) + cCP()yv(r)

n ) (2) (1.2)
Y ek, lumisp, vineg® Y2y
with a fixed instant of termination 9. We shall interpret game (1.2) as an approximation of game gl.l),
which is convenient for computer calculations. Here y(¢) is the phase vector, and the functions B® and
C? are piecewise-continuous. The constraint on the scalar control action of the first player is the same
as in game (1.1) and the set 0@ is a compactum in a finite-dimensional space. We assume that the
continuous pay function Y@ : R" - R satisfies the Lipschitz condition with a constant A and the condition
(x) — oo when |x| — . The first player minimizes the value of ¥?(y(%)) and the second player
maximizes it.

Quantities belonging on the approximating game are indicated by the superscript (2). We determine
the permissible preset controls u(-), v(*) of the first and second players in the same way as was done in
the C(ZZI)SC of game (1.1). The set of all permissible preset controls v(+) of the second player is denoted
by LY.

We shall assume that a certain continuous u-stable function ¥ : Z — R with the boundary condition

vA, x) = yP(x), xeR"

is constructed within the framework of the approximating game (1.2). According to the well-known
definition [1, 2], we say that the function ® is u-stable if, for any position (t., x.) € Z, for any t* €
(t+, 9] and for any v(-) e L®, a permissible preset control u(-) of the first player is found such that the
inequality

VA, yP %) < vy, x4)

is satisfied for the motion y@(z) = y(Z)(t; e, X, u(*), O()).

We assume that the function 1% satisfies the Lipschitz condition with a constant A with respect to the
argument x uniformly with respect to ¢ € 7. If @ is the value function of the game (1.2), then the
satisfaction of this property follows from the condition imposed on the function y*.

We introduce _the function B®) : T — R" which satisfies the Lipschitz condition with a constant p.
Interestingly, B® can be treated as a Lipschitz approximation to the functions BY and B®. We use
the following notation

6 = max|B®(0)|
teT

The concept of quasiconvexity of a scalar function is used below. As usual, this means the convexity
of its level sets (Lebesgue sets).

Condition A. For any t e T for which B®)(f) # 0, the contraction of function ?(t, -) in any line in R
parallel to the vector B?(¢) is a quasiconvex function.

Remark. We consider a function which is a contraction for the function ¥®(, -) in a certain line which is parallel
to the vector B®(f). The condition which has been formulated implies the requirement of a non-rigorous
monotonicity of this one-dimensional function along both sides of the point of its global minimum.

Condition A is satisfied, in particular, if the function V(z)(t, -} is quasiconvex for any ¢ € T. In the case
when @ is the value function of the approximating game (1.2), it is sufficient to re%[uire that the pay
function y*? is quasiconvex in order to ensure the quasiconvexity of the functions 2(t, ), t e T.

The switching surface. The multivalued function U®, For (t,x) € Z, we put

dA(t,x) = {ze R z=x+0aBY(1), a e R}
1f BO)(¢) # 0, then the set (¢, x) is a straight line which passes in the space R” through a point x parallel
to the vector BO(z). In the case when BO(#) = 0, the set s(t, x) is degenerate and coincides with

the point x. Without picking out the degenerate case separately, we shall always call the set (¢, x) a
straight line.
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Suppose that

Y(t,x) = min VPtz2), (t,x)eZ
ze SA(t, x)

A minimum is attained since the function ®(z, - is continuous and parts to infinity when |x| — . By
virtue of Condition A, the set of points of the minimum is an interval. If B®(¢) = 0, then ¥'(t, x) =
V(Z)(t, x),xe R".

Next, suppose that foralite T

(t) = {xe R": VP(t,x) =¥ (1, )}
M_(1) = {xe R": x+aB®(t) ¢ TI(1), Va.2 0}
M,(1) = {xe R": x+aB® (1) & I(r), Yo < 0}

The set I1_(f), IT,(¢) are located in the space R" on different sides relative to the set I1(z). It follows
from condition A that, for an;r (t,x) € Z, the function V(Z)(t, -) does not increase (does not decrease) in
the direction of the vector B®)(f) at the intersection of the straight line si(¢, x) with the set IT.(£), (TL(f)).

We define the multivalued function

{-u}, xeTl ()
Ut x) = {{u}, xe ML)
[—H, u‘]o xe€ n(t)

inZ.
The function U%(, <) takes limiting values from the interval [, p] in the sets I1_(¢), I1,(¢) and
“switches” from one limiting value to the other in the set I1(f). The set

II={(tx)eZ:xell(t)}

is closed, simply connected set which subdivides Z into two parts. Although the set IT is not always a
surface in the generally accepted sense, for clarity we shall nevertheless call it the switching surface of
the control action of the first player.

The set TT'(t). The multivalued function U'. We continue to introduce the notation for formulating the
basic result.
Suppose r > 0. In the case when BO)(r) £ 0, we put

(3)
@) = {xe R": x=z+a£(—3—)-(’—), ze (1), IalSr}
B (p)

The set IT(?) is a geometric r-expansion of the set I1(f). The expansion occurs with the use of the vector
BO(¢). 1f BO)(¢) = 0, we assume that IT'(¢) = TI(¢) = R".
We introduce the sets

(1) = {xe R*: x+aB®(1) ¢ IT'(1), Vo> 0}
(1) = {xe R": x+aB®(t) e II'(¢), Vo< 0}

The set IT_(¢) (IT,(¢)) is the part of the space R” which is located, relative to IT(¢), along the direction
of (in the opposite direction to) the vector BO(¢). It is obvious that IT (f) C I1(r), I, () C IL, (f). When
r = 0, we have IT'(¢) = T1(¢), IT_(t) = TL(8), T, (t) = T1.().
We define the multivalued function in Z
{-n}, xeI(»

U'(t,x) = {{u}, xelTi(p)
["'“’a u]a X € Hr(t)
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Formulation of the basic result. For any instants ¢, and ¢* from the interval T, we put

t* t*
Xty 1*) = uJ’x(r)dem(t)dt
ty 1y

x(t) = |BV) - B®(1)] +|B® (1) - BO(1)

m(t) = max [max l'C(”(t)q- max I'C(Z)(t)q]
le R [H<s1ige @'" ge 07

The quantity x(t., *) characterizes the difference in the functions B(l), B® and B® as well as the functions
C® and €@ and the sets QY and Q® in an integral sense. A prime denotes transposition.

Assuming that the initial positions of system (1.1) belong to a certain compact set K in the space of
the game Z, we denote the compact set in R", which determines from above the set of possible states
of system (1.1) at the instant ¥, by the symbol F. It is assumed that

I =y@|r = maxly®(x) - yP )|
xe F

The following assertion will be proved next.

Theorem. Suppose the conditions, including Condition A, imposed on systems (1.1) and (1.2), and also
on the functions ? and B(s), are satisfied. Suppose r 2 0, A > 0. Then, the estimate

TV(ty, %00 U, A) < VP (84, 50) + Altg, 1, ) + [y =y P ¢

(1.3)
Aty r, A) = 2AJ(20pPA + r)BR(D ~ £y) + 4AGPA + Ar + XY (25, O)
holds for any strategy U of the first player such that U(t,x) € U'(t, x), (t,x) € Z and any initial position
(to, XO) e K.

We will now give several explanations. The function ¥, which possesses the property of u-stability, is
assumed to have been constructed within the framework of the approximating game. There is therefore
a known value of F®(tg, x,) on the right-hand side of limit (1.3). The difference in the dynamics of the
injtial and the approximating games, as well as the difference in the function B®) from the functions
BY and B?, are taken into account by the quantity (fo, ©). The term ||y — @ ||  characterizes the
difference in the pay functions. The switching sets IT'(?), € T for the multivalued function U are defined
in terms of constructions which are implemented using the functions 1 and B®,

On the whole, the right-hand side of relation (1.3) estimates the guarantee of the first player in the
game (1.1) when it uses an arbitrary, single-valued positional strategy U, which is a sample from the
multivalued function U”.

Since I(r) C IT'(¢), t € T, then, outside the sets

M= {(tx)eZ:xeIl'(1)}

the strategy U is identical with the function U° which is specified using the surface IT. Suppose U is a
certain single-valued sample of the multivalued function U°. From what has been said above, we obtain
that the action of the strategy U°, which is performed with errors in the set IT, is also estimated by the
right-hand side of relation (1.3). It is therefore possible to speak of the stability of the strategy U° with
respect to inaccuracies in the construction of the surface IT.

Assuming that the approximate game is identical with the initial game and that B® = B®, then

2t ®) =0, [y —yP|r=0

Furthermore, suppose the value function T of the initial game is used as the u-stable function 1@
and that Condition A is satisfied. By virtue of estimate (1.3), we obtain

TV (10, x5, U°, A) ST (84, x0) + 20 /(261A + 1BR(D ~ 10) + AAOPA + Ar
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Consequently, if the function BW and, also, the pay function ¥ satisfy the Lipschitz condition yV(x)
—» o0 as |x| — o=, and if Condition A is satisfied for the value function IV in the pair with the function
BW and the switching surface IT is constructed on the basis of the function I'D then the strategy U°
can be taken as the universal, stable, optimal strategy U* in the game (1.1).

2. AUXILTIARY ASSERTIONS

Suppose
d(X,Y) = maxmin|x — y|
xe Xye Y
is the Hausdorff divergence of the set X from the set Y for compact sets X and Y in R". We put
*
Gt = U [Owumdr, i=1,2
u()e Lwr*
The sets GY(¢., t*) are convex compacta. The limit
*
d(G (14, 1), G (1 19)) < [m()al @2.1)
x

holds.

The permissibility set of system (1.2) at the instant of time ¢ for an initial state x, at the instant of
time ¢, and in the case of an exhaustive search for all of the permissible preset controls u(+), v(*) in the
interval [z, #] is denoted by the symbol GA(t; 14, x.). We put

GOt; tyy xy) = GP(8; 14, x4) + B(2(1 - 1,)0H)

Here, B(r) is a sphere of radius r in R".
Forte T and c € R, we put

W) = {xe R": VP, x)<c}, WP = {(,x)e Z:xe W)}

Lemma 1. Suppose (tx, x+) € Z,8 > 0, t, + 8 < ¥ and that () is the motion of system (1.1), by
virtue of the permissible preset controls u(:), v(*), which, at the instant of time z.,, emerges from the
point x,.. The estimate

V(g + 8,y (4 +8)) S VP(1y, x) + ABRS’ + MY (14, 5 +8) (2.2)
then holds.

Proof. Using a control v(-) € LY specified in the condition of the lemma, we define the point
1y +8
g = j cVyv(eyar
t*

in the set GO, £, + B).
Suppose g is the closest point of the set GP(t,, t. + ) to it. We choose (") € L® such that

te+8
g = I C(z)(t)f)(t)dt
fx

Using the u-stability of the function @, we obtain a B(-) along the direction #(-) such that the inclusion

Y2 1y +8) € Wt +8) (c* = v, x*)) 2.3)
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is satisfied in the case of the motion y® () = y®)(t; ., x,, ii(*), B(*)) which emerges from the point x, at the instant
of time ..
We now use the notation

Te+d te 48
=] BV(tyu(t)dr - | B®(nya(r)dt
L Iy
1o +8 te+38
5= | Pwvwd- [ CPwdwadr
e 1y
Then
YW 1y +8)—y* (14 +8) = 1+ 1, (2.4)
We have
te+ 8 ty+8
= (B (r) - B (1) u(t)dt ~ | (B (1) - BB (0))a(r)dr +
N * (2.5)
fe+8 te+d
+ (B‘”(t)—s(”(t*+8))(u(z)—a(z))dz+3‘3’(t*+6) [ (u(e)-aq)de
% [
J,=8-% (2:6)

We denote the operator for the orthogonal projection of the space R* onto the subspace, which is orthogonal
to the vector B(3)(t* + 3), by the symbol =.

Bearing in mind the fact that the controls u(¢) and u(z) are bounded in modulus by the number u, the function
B® satisfies the Lipschitz condition with a constant B and that 1Bz, + &) = 0, from relation (2.5) we obtain

fe+ 8
gy <p J 1<:(t)dt+l3u§52

x
Taking into account relations (2.6) and (2.1}, we have

te+ 8
gy = Ing—nzgl<lg-gl< [ m(n)ar

%
Finally, we obtain
Iy ity +8) -1y P2y + )| < pus’ 3
Ry 'ty +0)—My (14 +O) SPUS 4+ (24, 5 +9) 2.7

Suppose ¥ is the point on the line s4(z, + & y"7 (¢, + 8)) which is closest to the set W@ (¢, + 8). It follows
from inclusion (2.3) and the definition of the operator = that

({3, Wty + 8) i -1y, +8) = Iyt +8) -1y (2, 4 8)]
Hence

(=)

V(z)(t* +0,X)<cy + xlny (14 +8)- ﬂ:y(z*)(t* + 6)[ =

= V(z)(t*, Xy) ¥ A,ny(l*)(t* +6)- ny(z*)(t* + 8)|
Taking inequality (2.7) into account, we conclude that the required inequality follows from the fact that

Vity +8,y" (1, +8) < VP(1, + 8, %)
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Lemma 2. Suppose (t4, x5) € Z, & > 0, £, + & < and that y(") is the motion of system (1.1) by
virtue of the constant control and a certain v(-) € LY which emerges from the point x,, at the instant
of time ¢,.. We assume that

G(Z)(t* +8; 14, xg) CTI (2, +0) (G(z)(t* +8; 1y, xy) I (24+9))
The estimate
VO (1, +8, Y (14 + 8)) S VP (14, x) + ABRE® + MY (14, 15 + 8) (2.8)
then holds.
Proof. As in the initial part of the proof of Lemma 1, we choose a control ¥() € L? using the specified

v(") € LY, Next, using the u-stability of the function 1V we select i(-) such that the motion y)(-), which arises
by virtue of &(-), ("), satisfies the conditions

W) = xge Y1 +8) e W, +8) (04 = VP24 20)) (2.9)
We put
te+8
2=y At +8)+ BV (1, +8) [ (w(n-a(n)ar
L
We will show that

VP, +8,2) < VP(1, + 8,y (1, + 8)) (2.10)
Consider the case
u(t)=p, GP(ty+8; 1y, x,) CIL (1, +8)
By virtue of the last imbedding, we obtain
Yot +8) € T (1, +8), 2Tl (14+9) (2.11)
Since u(t) 2 u(t), t € [t,, t, + ], the vectors 2 — y&Xt, + 8) and BO(z, + 8) are codirected. On taking Condition
A into account, we derive inequality (2.10) from this.
In the case when
w(t)=—p, GP(1,+8; 1y, x,) ST (14 +8)
inequality (2.10) is proved in a similar manner, only now it is necessary to use relations which differ form (2.11)
by the replacement of the plus sign by a minus sign, and the inequality u(t) < @(t), ¢ € [t., t. + 3].

Since the right-hand side of inequality (2.10) does not exceed c,., we obtain the inclusion 2 € wd (t, + 5).
Therefore

Ay (1 +8)}, Wty + 8) <[y (0, +8) - 4
Using the definition of the vector £ in equality (2.4), we have
Wit +8)-2= J,+1,- B, +8) | (u(o)-a(t)de
f*

Taking into account equalities (2.5) and (2.6), the Lipschitz condition for the function B®, the rule for selecting
the control §(*) and inequality (2.1), we obtain

e

(14 +8) =2 SPUS" + X (1 14 +B)
The required inequality (2.8) follows from the fact that
V(z)(t* +8, y(")(t* +8)) < V(z)(t* +6,2)+ A.ly“*)(t* +9) - 2[

VPt +8,2) s V(1 x4)
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Lemma 3. Suppose (£, %) € Z, I e (f, 9] and that y(l*)() is the motion of system (1.1) by virtue of a
constant control u(f) = (u(f) =) and a certain v(*) € L D which emerges from the point ¥ at a certain
instant of time 7. We assume that y)(¢) € T1.() (y1(r) e TI(r)) for all ¢ e [f, 7].
The limit
vPa y 3 < vIPa, ®) + Ax (1, B (2.12)
then holds.

Proof. We divide the interval [7, ] into instants ¢y, ty, ... , &, (¢ = £, t, = f) with a step 8, such that the relation

* 2 *
GOty 1t YV e M1, 1) (Gt 1ot ¥ V) ST, 1))

is §atisﬁed foranyk = 1, 2, ..., s ~ 1. This can be done on the basis of the assumption concerning the location of
y37(2) relative to T1(z). By virtue of Lemma 2, we have the estimate

VOt 105 (0 10) S VP00 ¥ (1) + MBS + MY (1 1.0 1)

On applying it successively fork = 1, 2, ... , s — 1, we prove an equality which differs form (2.2) in that there is a
term ABpS(Z, £) on the right-hand side. On taking the limit when 8 — 0, we obtain the limit (2.12).

Lemma 4. Suppose (£, %) € Z, € (£, 9] and that y37)(*) is the motion of system (1.1), by virtue of the
permissible preset controls (), v(-), which emerges from the point X at the instant of time ¢. The limit

V@, Y1) < vP(3, 5) + 200G - 1y + My (5 ) (2.13)
then holds.

Proof. We assume that (£, x,) € Z, 8 > 0, ¢, + & < 9. Copying the initial part of the proof of Lemma 1, using
the specified v(-) € LIV, we select the extremal control 9(") € L?. We then select () such that the motion y&0O,
which arises by virtue of i(-), ©(*), satisfies conditions (2.9).

On taking account of equalities (2.4)—(2.6), the Lipschitz conditions for the function B, the inequality
[BO(t, + 8)| < o, the rule for selecting the control O(*) and inequality (2.1), we obtain

ly(l*)(t* +3)— y(z*)(t>l< + 5)] < Bp82 + 2018 +x(ty, 1y + )
By virtue of the relations

VOt + 8,570, +8) VP15 + 8,y (14 +8) + ALyt +8) -y (1, +8)

V(1,4 8,y (1, +8) < VPt xy)
we derive the inequality
(2) ) 2) 2
VT e +8, Y7 (1 +8)) SV 7 (1, 1) + ABUS” + 2h0pd + Ax (2, ) (2.14)

from this.
As in the proof of Lemma 3, subdividing the interval [£, {] with a step 8, we use the estimate (2.14) at each step
and, taking the limit as § — 0, we obtain the limit (2.13).

3. PROOF OF THE THEOREM

We fix a number r > 0 and consider the motion y(l)(~) of system (1.1) from a position (fy, xp) € K, 1, < ©
by virtue of a certain strategy U C U of the first player with a step A of the discrete control system and
a certain v(-) € LW,

In order to describe the change in the function *® along the motion y®() in the interval [ts, ],
we introduce the notation

Var(V®, [1,,, 1%1) = V(% y V(%) - v (1, yP(14))
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1. Suppose B > 0, 6 > 0. We put
k= JQ2opA+ rn/(Bp) 3.1

(A) Along the motion yU(), we separate out the “loops” which are associated with entry into the sets
IT'(¢). We also determine the free intervals.

On moving from #, to 9, we find the first instant of time ¢, when y)(¢) e IT'(£). We call this instant
the instant of the start of the first loop and we denote it by . Next, we note the instant 7; of the
termination of the first loop as the last instant ¢ in the interval [#1, t; + A] m T at which yO(@) e T @).
The instant £, in particular, can be identical to ¢;.

We take the first instant £ € [t; + &, §], when y{1(¢) € IT () as the instant, £,, of the start of the second
loop. We then note the instant 7, of the termination of the second loop as the last instant ¢ in the interval
[t2, &2 + h] © T, when y((r) € TT'(2).

Continuing this process, we obtain the set of loops in [£y, ).

We now remove the domain of the intervals of the loops which have been constructed from [z, 9]
and we obtain an ordered set of segments. We call each of them a free interval which may be degenerate,
that is, consist of a single point.

If there are no loops in [z, O], then we assume that [y, 9] is the free interval.

(B) Suppose [T, 1] is a certain free interval. We will show that an increment of the function D in it
is described by the inequality

Var (V, [1,n]) S 2AopA + My (T, n) (3.2)

The subscript f emphasizes that the change in the function 1 is calculated in the free interval.
A certain control u(+) is realized along the motion yI(). We call the value u(f) a “correct” value if

u(t) = p (u(t) = -p) when y(r) € IL,.(5) (YD) € TLQ)).

In the domain of the free interval, the motion y() goes along one side of the set IT and, therefore,
along one side of the surface IT. Hence, when A <1 - 1, the control u(¢) is correct in [T + A, n] and
arbitrary, perhaps, only in [1, T + A]. By virtue of Lemma 3, we obtain

Var(V?, [t +A,1]) SAx(T+A,1)
and, by virtue of Lemma 4,
Var(V(z), [T, T+A]) <2ALGA + Ay (T, T+ A)

On summing the last two inequalities, we arrive at the limit (3.2).
If A > 1 -1, we apply Lemma 4 to the whole of the interval {t, n]. We again obtain the limit (3.2).

(C) We shall say that [, n] is an interval of the form E, if it consists of a certain loop [z, ;] and a free
interval adjacent to the right of it. We shall call an interval [z, n] of the form E; with the additional
condition T + A& < 1 an interval of the form E,.

We will now evaluate the increment of the function 1? along the motion y(l)(~) in an interval of the
form E;.

We consider the interval of the loop [t;, £;]. Applying Lemma 1 when 8 = 7, - ;, we have

V(i v () < VOt y V(1)) + MBR(Ei— 1) + Ay (1, 72)

Since 7; — t; < h, the second term on the right-hand side can be replaced by APuA(Z; - ;).
On taking account of the inequality

~ ~ —~ 1 —~
VP, Y ) SV (@, y U E)) + A
we arrive at the relation

Var(V®, [1, ,]) S ABUA(E — 1,) + Ar + Ax(1;, 1) (3.3)
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In the free interval [7;, n], we have inequality (3.2) when T = 7; and, when this is combined with
inequality (3.3), taking account of the inequality #; — ; <1 — 7, we obtain

Varl(V(z), [t1,m]) SABUA(N —T) + 2A0opA + Ar + Ay (T, M) (3.4)
The subscript 1 emphasizes that the calculation of the increment in the function 1/ takes place in an
interval of the form E;.
We will now evaluate the increment Var, of the function /? along the motion yV(") in an interval
of the form E,. Since, 1 — T 2 4 in this case, the inequality
2A0UA + Ar < ABph(n -1)

follows from relation (3.1).
On invoking inequality (3.4), we obtain

Var,(V®, [1,n]) < 2ABph(n - 1) + Ax(T, M) (3.5)

(D) We will now consider the interval [ty, 8] and represent it as being composed of the first free interval
[to, t1], a finite number of intervals of the form E,, which go one after the other from the instant ¢ to
a certain instant t* (their total interval is [¢;, *]), and the remaining interval [t*, 9] of the form E;. On
successively applying limits (3.2), (3.5) and (3.4), we have

Var(V?, [15, 81) = Var (V?, [, 1,1) + Var(V?, [1,, 1) +

+Var, (V?, [1*, 8]) S 2A0pA + 2ABph(r* - 1;) +
+ ABRA(D - 1*) + 2AOUA + Ar + AY (25, 9) £
S2ABRA(D - 15) + AAORA + Ar + AY (2, B)

Substituting 4 using formula (3.1), we obtain

Var(V?, [1,, 91) S A(ty, 7, A) (3.6)

2. Suppose B = 0, ¢ 2 0. On moving from ¢, to 9, we find the first instant ¢ when y()(¢) € IT(¢). This is
denoted by ¢;. Suppose £ is the last instant in [, ] when y(D(¢) € TT'(¢).
We have

YW e @), 1elin) U0l
On the basis of Lemma 3 and 4 (as when deriving inequality (3.2)), we obtain

Var(V?, [1,, 1,1) < 2A0pA + Ax (10, 1) (3.7)

Var(V?, [1, 8]) < 2AopA + Ax (5, 9) (3.8)

for the intervals [f5, 1;] and [, ).
For the interval [¢, ¢], using Lemma 1 with B = 0, we have

v,y 1) < VP, yV 1)) + My (r, 1)
and, hence, on taking account of the inequality

v,y <, yPay + ar

we arrive at the limit

Var(V?, [t,, 1) S Ar + Ax (2, ) (3.9)
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Combining inequalities (3.7)—(3.9), we obtain

Var(V?, [1,, 81) S4AGUA + Ar + Ax(1g, ©) (3.10)

3. Using inequality (3.6) when > 0, 6 > 0 and inequality (3.10) when 3 = 0,62 0, we ha\'/e the limit
V28, y1(0)) VP (24, x0) + Altg, 7, A) (3.11)
Since
P00 = V20,5000, 10 @) <’V + I -1l

and the right-hand side of inequality (3.11) is independent of the chosen v(*) € LY, we conclude that
inequality (1.3) holds.

4. TEST OF THE NUMERICAL CONSTRUCTION OF THE
SWITCHING SURFACE

Algorithms for the numerical construction of switching surfaces in linear ditferential games with a fixed instant of
termination are not discussed in this paper. We will confine ourselves to a brief description of publications where
the results of computer modelling using switching surfaces have been reported.

The simplest case is when, in a linear differential game, the values of the quasiconvex pay function at the instant
when the game terminates are determined by only two certain coordinates of the phase vector, that is, n = 2.

Efficient algorithms for constructing ¢-sections of sets of the level of the value function in the coordinatcs of
system (1.1) have been developed in [10-12] for this case. Discretization with respect to ¢ determines the
approximating game (1.2). The constructions are carried out in a specified mesh {#;} of the instant of time and in
a certain mesh {c,} of the values of the valuc function. Each section W(L.z)(tk) of the set for a level is a convex polygon
in a plane. The transition from the section which has been constructed Wﬂz)(tk) to the section WP (#,_y), te_1 < ti
is accomplished using a retrograde procedure which uses the operation of making a positive-homogeneous,
piecewise-linear function convex in the space R".

Simple processing [5, 7, 11, 12] of the polygons W' D), c {c,} gives the switching line, corresponding to the
instant ¢, for the control action u of the first player. The switching lines which have been calculated in the mesh
{t;} give the switching lines in the space of the game. The sets of switching lines are stored in a memory and are
used in the discrete control scheme.

The problem of the landing of an aircraft under conditions of windshear has been investigated [11, 13-16] using
the above-mentioned programs. The landing process was considered up to the instant when the end of the runway
was reachcd. A control procedure using a switching surface, which is specified by a set of switching lines, was also
tested [17, 18] on model landing and take-off problems from [9-21]. A problem on the take-off run of an aircraft
along the runway under conditions of windshear was considered in [22]; the control procedure investigated was
also based on the construction of a switching surface.

The problem of the shifting of a load from a fixed point of suspension has been studied in a game formulation
in [23]; a switching surface was constructed which determines the optimal control procedure.

A software package for constructing switching surfaces in the case when n= 3 has been described in [24].

I wish to thank L. V. Kamneva for useful remarks.
This research was supported by the Russian Foundation for Basic Research (03-01-00415).
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