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ABSTRACT

The time-optimal problem for linear differential games in the plane is considered. An al-
gorithm for constructing level sets of the value function is proposed. Numerical examples
are presented.
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INTRODUCTION

In this paper, we consider differential games [1-3] with the linear dynamics and geometrical
bounds on controls
t=Ar4+u+v, t€R* ueP, veEQ. (1)

Here P and Q are convex closed polygons in the plane. The terminal set M (a convex
polygon in the plane) is given. The first player who governs the control parameter u seeks
to minimize the time of attaining M from some initial point m, the aim of the second
player governing the control vector v is opposite. So, the payoff of the game is the time of
attaining the set M. The permissible controls are feedback controls.

We are interested in finding W (@, M), 6 > 0. Each of them is the set of all initial states
xo such that the first player guarantees the transition of the state vector to M by the
time 6. The set W (6, M) is the level set (the Lebesgue set) of the value function of the
minimum-time game problem.

In terms of [2, 3], the set W (6, M) is also called ¢-section of the maximal u-stable bridge
(the cross-section with the hyperplane ¢ = 6).

The paper is devoted to the numerical construction of W (6, M).

In many cases, the sets W (6, M) can be found only numerically (even for examples with
very simple dynamics, for instance, £} = x5+ v, T =u, |u|<1, |v|<1).

The application of backward procedures is the typical way for solving control and dif-
ferential game problems. General ideas of backward procedures were considered in papers
of R.Bellman, R.Isaacs, W.Fleming, [..S.Pontryagin, and B.N.Pshenichny.

The most developed results [4-8] related to algorithmic implementations of the backward
constructions to differential games were obtained for the case where a linear system should
be brought to a convex terminal set M at a given time moment, and we are interested
in finding the set of all states from which this transfer can be done. In this case, the
application of the backward procedure gives t-sections of the maximal u-stable bridge.
The algorithms use the property: the convexity of the target set implies the convexity of



t-sections of the maximal stable bridge. This makes the problem easier and enables to
apply numerical methods to some important practical problems [9, 10].

The above mentioned feature is not inherent to differential games with the nonfixed time
of termination: as a rule, t-sections of maximal stable bridges are not convex. Numer-
ical methods for solving problems with the nonfixed time of termination and nonconvex
problems with the fixed terminal time are studied in papers of V.N.Ushakov and his col-
laborators [11, 12]. Recently, numerical methods for constructing value functions and their
level sets based on the notion of viscosity solutions of Hamilton-Jacobi (Bellman-Isaacs)
equations were developed [13, 14].

The algorithm described below is based on the ideas of the algorithms proposed in [4]
for linear differential games with the fixed time of termination.

STATEMENT OF THE PROBLEM

We now define the set W (6, M) more precisely [2, 3]. Let U be the set of all positional
strategies U of the first player. Namely, this is the set of all functions defined on [0, 8] x R?
and taking values in P. Let o be an arbitrary partition of the segment [0, 8] formed by the
points 0 = t; < ty < ... < t, = 0, let d(o) be its diameter, and let v(-) be a measurable
function of time with values in Q. Let y(-; 0, zo, U, v(-)) denotes the Euler spline emanating
from the point 5. We denote by W (f, M) the set of all points zy € R? for each of which
there exist a strategy U € U and a mapping ¢ — d(¢) from R, to R, such that for any
e > 0, any o with the diameter d(o) < d(¢), and any function v(-) with values in @) there
exists a time t € [0, 0] at which y(t; 0,20, U, v(-)) belongs to the e-neighborhood of M.

Such a definition is equivalent to other well-known definitions [3, 13, 14] of the solvability
set W (0, M) of the time-optimal game problem. We give this definition because it shows
properties of the optimal guaranteeing strategy of the first player in terms of the bundle
of motions generated by various controls of the second player.

THE IDEA OF THE ALGORITHM

The set W (0, M) is formed via a step-by-step backward procedure giving a sequence of
embedded sets

W(A, M) C WA, M) C W(BA, M) C...C WHA, M) C ... C W(8,M). (2)

Here A is the step of the backward procedure. Each set W (iA, M) consists of all initial
points such that the first player brings system (1) into the set W ((i — 1)A, M) within the
time duration A (we put W (0, M) = M).

Before doing the first step of the backward procedure, we find a usable part I'y of the
boundary of M. In accordance with [1], the usable part is a curve or several curves on the
boundary of M attainable for trajectories of system (1) from points lying in the exterior
of M close to the boundary of M. The usable part is defined by the following formula

Iy=cl{z € OM : r&i}gr&an(ﬁ, Az +u+v) <0, V0 e K,}.
Here K, is the cone of outward normals to the set M at x. Since the target set is convex,
each curve of the usable part is locally convex in the following sense: the normal to the
curve at a point x keeps its rotation in only direction when x moves along the curve.
Let us introduce the term “front”. We put Fy = ['yg. The front F; is the set of all points on
the boundary of W (iA, M) for which the minimum guaranteeing time of the achievement
of W((i—1)A, M) isequal to A. For other points of the boundary of W (iA, M) the
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Figure 1. Construction of the sets W (iA, M).

optimal time is less than A. The line OW (iA, M) \ F; possesses the properties of barriers
[1]. The front F; is designed using the previous front F;_;.

Due to the linearity of system (1), the fronts Fy, F5,..., Fj,... inherit (Figure 1la) the
property of the local convexity of ['y at the initial stage of constructions, and this property
is kept until the current front F; does not meet the set W ((i — 1)A, M). Straight lines
connecting the endpoints of F; with the corresponding endpoints of F; ; form the con-
tinuation of the barrier lines. The boundary of W (iA, M) is formed by the front F;, the
above mentioned continuations of the barrier lines, and the line OW ((i — 1)A, M) \ F;_;.
The property of the local convexity of fronts enable us to employ (with some small modi-
fications) procedures which were developed for the construction of ¢-sections of maximal
stable bridges in the case of linear differential games with the convex target set and the
fixed time of termination [4].

If the next front F; meets the already constructed set W ((i — 1)A, M), we say that the
front collides with W ((i — 1)A, M). The situation of “collision” means that the current
front meets the barrier part of the boundary of W ((i — 1)A, M) or the part oM \ Ty of
the boundary of M. To construct the next front Fj,;, we should take into account that
F; and the boundary of W((i — 1)A, M) have the nonconvex conjunction (Figure 1b).
Due to the properties of the plane, the complement of W (iA, M) is locally convex near
the conjunction point. So, assuming that the second player seeks to bring the system to
the complement, and the first player has the opposite objective, we can use the ideas of
the “convex” algorithms from [4]. After combining the curve which is obtained from the
locally convex part of the front with the one obtained from the nonconvex conjunction, we
get a new front Fj,; that may be not locally convex.

So, the algorithm consists of the following operations: 1) finding the usable part on the
boundary of the target set; 2) constructing the next front using the previous front; 3) test-
ing the intersections of the current front with the barrier part of the already constructed
set and the boundary of M. In the case the intersection is detected, further computations
are being carried out taking into account the arising nonconvex conjunction and possible
splitting the front into several parts.

CLASSIFICATION OF SINGULAR LINES

The analysis of singular lines where the value function and optimal trajectories have pe-
culiarities is of great importance in differential games. The algorithm proposed can be



provided with some simple diagnostics for finding and classification of singular lines and,
in particular, for finding the most complicated among them equivocal [1, 15] lines.

In order to explain the possibility of the algorithmic classification of singular lines, we
give some more detailed description of local constructions carried out in the process of
finding the next front. The sets P, () are assumed to be segments.

The front F; is stored as an ordered collection of points. We consider each front as a
polygonal line consisting of links defined by pairs of neighboring points. The normals to
the links are directed to the front’s outward side which is said to be negative (Figure 1).
The opposite side of the front is called positive. We call an apex of the polygonal line to be
the point of the local convexity if the angle between the positive sides of the neighboring
links is less than 7. We call this apex the point of the local concavity if the above mentioned
angle is greater than 7 or equal to 7.

Each link ab of the front F; is assigned the segment with endpoints «, # which are defined
by the formulas

a=a—A(Aa+u®+v°), F=0—A(Ab+u°+v°).
Here, u° and v° are extremal controls obtained from the following relations

u* = argmin (g, ), 0 = argmas (¢, o), (3)

where (g is the normal to the link ab. We say that the segment «/f is generated by the
segment ab with the use of extremal trajectories emanating from ab with the controls
u®, v°. If the extremal controls of the players are the same for two neighboring links ab,
be, then the constructions done according to the above rule give four points, and two of
these points coincide. So, we obtain two adjoint segments o3 and 3y which are generated
by the links ab and be. If the extremal controls defined by two neighboring normals do not
coincide at least for one of the players, then we obtain two non-joint segments «a; and
B27y. In this case, some additional constructions should be done.

Let an apex b at which two neighboring links of the front F; join be the point of the
local convexity. The following cases are possible.

A. The extremal control of the second player is the same for the normals /1.5 and £};
the extremal control of the first player for £, differs from that one for £,. In this case,
two points (#; and (3, are associated with the point b. The segment with the endpoints
(1, B2 is called the insertion due to P (Figure 2A4).

B. The extremal control of the first player is the same for the normals /1,4 and £p); the
extremal control of the second player for /[, differs from that one for £p. The segments
a3y, By generated by ab, be intersect each other in a way shown in Figure 2B. Let £ be
the intersection point. We delete the parts 3£, 32£. There are two extremal trajectories
that arrive at the point . The first trajectory starts from the segment ab, the second one
comes from be. Assuming the motions go forward in time, we obtain that they disperse at
the point & with respect to the segment b€.

C'. The extremal controls of the first and the second players for £[4 differ from those for
i) There are normals /p and £g to P and @ that lie between £|4), £1,). Suppose that /g
lies between (p and {|4. In this case, we add a segment 3,33 to the segment a3; (Figures
2C", 2C5). The endpoints 31, 3 are obtained from the point b using two different extremal
controls of the first player and the extremal control of the second player corresponding to
the normal /.. We call this additional segment the insertion due to P. We intersect the
polygonal line a3, 33 with the segment 35y. The intersection point & belongs either to 333
or aff;. We delete the parts 35€, £2€. If the point £ belongs to a3; (Figure 2C), then two



Figure 2. Constructions in the case of local convexity.

retrograde trajectories arrive at this point: one of them starts from ab, the other starts
from be. If € belongs to the insertion due to P (Figure 2C5), then one trajectory comes to
¢ from the segment be and the other trajectory comes from the point b. The latter is not
extremal because it is obtained with some not extremal control of the first player ensuring
the transfer to the point £ and the extremal control of the second player corresponding to
{1a)- Considering trajectories in the forward time, we obtain two trajectories emanating
from &: one of them is extremal and the other one is not extremal.

If the normal /g lies between /|, and /p, the difference is that the insertion due to P
adjoins the segment (5 generated by be.

Practically, the algorithm we use is more complicated than the local constructions de-
scribed above. Namely, we intersect polygonal lines consisting of a large number of links.
Links of fronts can get smaller. Nevertheless, the algorithm does not require to decrease
the step A in accordance with the length of links.

The classification of singular lines is done as follows.

In the case A, we have two points (1, o of the front F;,; which give the insertion due
to P. One of these two points (any of them) is called a switch point of the first player.

In the case B, the intersection point £ is called a dispersal point of the second player.
This name characterizes the fact that two optimal forward time trajectories obtained with
different controls of the second player emanate from such a singular point. Each of these
trajectories is the extremal trajectory; one of them goes to the region where the optimal
control of the second player takes the first of two extremal values; the other trajectory
goes to the region where the optimal control of the second player takes the second extremal
value.

The intersection point £ which appears in the case C' is the dispersal point of the second
player if it does not belong to the insertion due to P. Two optimal trajectories which are
both extremal emanate from this point. The intersection point is called an equivocal point
of the second player if it belongs to the insertion due to P. In this case, two trajectories
emanate from such a point: the first one is extremal and the second one is not extremal.



It depends on the behavior of the second player which of these two trajectories is realized.
Some similar classification of singular points can be done in the case of the local con-
cavity.
As a result, we obtain a collection of singular lines (switch lines, dispersal lines, equivocal
lines) after finishing computations.

EXAMPLES

In this section, numerical examples of computing the sequence {W (iA, M)} are given. The
step A was equal to 0.05 in all cases. The terminal set M was a small regular octagon with
the center at the origin in the examples 1, 3, and with the center at the point (—2.2,0.4)
in the example 2.

1. The well-known example of the time-optimal problem for oscillating systems in the
theory of optimal control [16] has the form

.Ct'l = X2
.fi?'z = —I —|—U,, | u |§ 1. (4)

The sets W(r, M), 7 = 2Ak, k = 1,80, are depicted in Figure 3. Note, that W (1, M) is
convex for any 7.
2. Now, consider the following differential game:

i‘l = To + Ul + v (5)
i‘Q = —X1 + U+ V2

u=(u,uz) € P, v=(v,v3) €Q

whose dynamics is similar to (4). The set P is the vertical segment with the endpoints
(0, —2.5), (0,2.5), and @ is the segment with the apexes (—5,1.5), (—1,—1.5). In Fig-
ure 4a, the sets W (r, M), 7 = iA, i = 1,132 are depicted. The computations are carried
out up to 7 = 6.6. At 7 = 6.6, the front collides with the terminal set M and is divided
into two parts. Further constructions are being done independently for these two parts.
The computations for the upper part are continued till 7 = 11.6 in Figure 4b, and we fill
up the gap G. The front which corresponds to the maximal 7 = 11.6 lies approximately in
the middle of G. In Figure 4b, only two fronts constructed from the lower part are shown.
The accumulation of fronts generates black regions in Figure 4, which means very fast
changing the value function (though it is continuous).
3. Figure 5 corresponds to the following system

i‘l = 0.35$1+1‘2+U (6)
:L.IQ = —08.1'1 +u

—2<u<15 —61<v< -4

The level sets W (r, M) are computed for 7 = iA, ¢ = 1,189. Up to 7 = 5.7, the front
moves between two barriers emanating from the set M. The left barrier terminates at
T =5.7. For 7 > 5.7, the front begins to go around this barrier so that one of its endpoints
slides along the outward side of the barrier. At 7 = 8.15, the front collides with some early
part of the left barrier from outside. For 7 > 8.15, the left and right endpoints of the front
move towards each other along the left barrier. The computation is finished at 7 = 9.45.

In this example, the set filled up with the fronts computed for 7 < 9.45 is the maximal
set where the optimal guaranteeing time is less than infinity. The first player can not
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guarantee the transferring to M from initial points lying outside this set within a finite
time.

In [17], a number of numerical examples computed for the minimum-time second-order
problem with different eigenvalues of the matrix A are given.

OPTIMAL FEEDBACK CONTROL AND OPTIMAL TRAJECTORIES

The problem of finding optimal controls is rather independent task. Let us demonstrate
the possibility of constructing optimal controls in the example (6).

The singular lines for the game (6) are depicted in Figure 6.

The barrier line acdef terminates at the point f. After that, it is continued by the
equivocal line fg which splits into the switch line gc of the first player and the switch line
gr of the second player at the point ¢g. The curve bhkprs is the barrier, the curve dk is
the equivocal line, and the curve ec is the switch line of the second player. The singular
lines listed above divide the set where the problem has a solution into subsets so that the
optimal controls of the players take constant values in the interiors of the subsets. These
constant values are equal to the minimal and maximal admissible values of the control
parameters: u, = —2, u* = 1.5, v, = —6.1, v* = —4. On the boundaries and near the
boundaries of the subsets, the optimal controls are defined in a special manner.

The feedback control we specified is optimal in the interiors of the subsets (Figure 6).
If the boundary of some subset contains a part of a barrier line, it can require the first
and the second player to control in a special manner near this line to provide the time of
termination to be close to the value of the game. The value function is discontinuous on
barriers. The side of a barrier faced to the set where the value function is smaller is said
to be positive. The opposite side is called negative.

Let us consider, for example, the set bounded by the curves ascdk and abhk. Denote
it by K; (Figure 7). In the interior of K7, the optimal controls are v = u,, v = v*. The
boundary of K; involves the arcs acd and bhk of the barriers.

The barrier acd is the trajectory of the system with u = u,, v = v,. The control u, of the
first player prevents trajectories from penetrating from the positive side to the negative
side for all admissible controls of the second player. The control v, of the second player
prevents trajectories from penetrating from the negative side to the positive one for all
admissible controls of the first player. According to the terminology of R.Isaacs [1], the
controls u = wu,, v = v, ensure the property of semipermeability. Since the protective
control of the first player coincides with the control value which is optimal in the interior
of K, the trajectory generated by the optimal control of the first player can not come to
the arc acd from the interior of K. So, in this case, the first player need not operate in a
special manner near this arc.

The arc bhk is divided by the point w into two parts so that the protective control is
u = u* for the arc bw and v = u, for wk. Near wk, the first player does not need any
special way of control.

If a trajectory comes to the curve bw (or it lies very close to bw), the first player must
change his control u = u, for u = u*. After the changing, the trajectory can go back to the
interior of K, then the first player switches his control to u = u,, the trajectory comes to
the curve bw again, and so on. As a result, a sliding mode which is schematically shown
in Figure 7 occurs. Decreasing the step of the control choice of the first player, we obtain
a trajectory which slides along the curve bw. Limit trajectories go along bw towards the
point b. The “slowest” trajectory among them delivers the value of the game.

The arc bw is divided by the point z into two parts. For the part bz, the slowest
trajectory goes with v = v,, whereas the control u depends on the current point on this



curve and takes values from the interval (u,, u*). The motion along the arc zw is feasible
for v = v* only. This value is protective for the second player. In this case, the optimal
limit trajectory is obtained with v = u*, v = v*.

Similarly, one can consider the behavior of the first player near the barrier kprs which
lies on the boundary of the set K5 contoured by the curve kprgfedk. Here we also have a
part of the barrier which lie near the point £ and for which the protective control of the
first player does not coincide with the optimal control u = u* inside K,. After arriving
at this part, the first player must change his control for u = u,. As a result, we obtain
a sliding motion near the barrier towards the point k. The optimal limit trajectory goes
exactly along the barrier. For the barrier fed, the protective control of the first player is
u = u*. So, the first player need not handle in a special manner near fed.

Since the second player must prevent trajectories from penetrating from the negative
side of a barrier to the positive one, it can require from the second player a special way
to form his control when trajectories approach the negative side of the barrier.

In Figure 8, optimal limit trajectories emanating from the initial point xq € K3 are
shown. At the initial stage, the optimal trajectory goes with the controls u,, v* and it
is unique. After approaching the equivocal line fg, the optimal trajectory splits into two
trajectories: one goes along the equivocal line fg, the other goes to the region K, where
u = u*, v = v, are optimal. The equivocal line ends at the point f, so, there exists a
trajectory going along this line up to the point f and leaving this line at the point f.
Three trajectories leaving fg are shown in Figure 8. Each of them approaches the barrier
pk, then goes along pk and arrives at the point k. After that, they go along the equivocal
line kd, and they can bifurcate at each point of kd. After the bifurcation, one of the
trajectories continues to go along the equivocal line, the other leaves this line. In Figure 8,
two trajectories leaving kd are shown. Moving in the interior of K, where v = u,, v = v*
are optimal, these trajectories approach the barrier bw and go along bw.

All trajectories described are optimal. The dark region in Figure 9 is filled with the
optimal trajectories starting from the point xy. The splitting occurs on the equivocal lines
fg and kd.

Figure 8. Splitting the optimal trajectories Figure 9. The set filling by optimal
on equivocal lines. trajectories from xg € Kj.



Summarizing, the principle of the construction of optimal trajectories is the following.
When constructing optimal trajectories outside singular lines, we take into account that
optimal controls are determined from the relations (3) with ¢4 replaced by the normal to
the front at the current point. When specifying trajectories which go along singular lines,
we take into account the behavior of trajectories on each of singular lines.

CONCLUSION

Effective algorithms can be created for solving differential games in the plane. In this
paper, a general scheme of the algorithm for linear time-optimal differential games is con-
sidered. Possibility of the classification of singular lines in the computation process is
demonstrated. Examples of computing level sets of the value function are given. Also,
examples that serve for the explanation of the behavior of optimal trajectories are presen-
ted.
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