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∗Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences,
Yekaterinburg, Russia

∗∗Ural Federal University, Yekaterinburg, Russia
∗∗∗Airbus Group /MBDA France, Paris, France

e-mail: sskumk@gmail.com, patsko@imm.uran.ru, stephane.le-menec@mbda-systems.com

Received September 6, 2013

Abstract—We consider an antagonistic differential game where the first player controls the
actions of two pursuers that aim to minimize, at a given time instant their miss with respect
to an evader. The second (maximizing) player is identified with the evader. We study the case
when dynamic capabilities of pursuers are less than the capabilities of the evader. We propose
a quasioptimal control method for the first player with switching lines. We also show modeling
results.
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1. INTRODUCTION

The works [1–3] consider a model linear pursuit problem with two pursuers and one evader.
Three inertial objects move along a straight line. Control for each of them is scalar and bounded
in absolute value. At a predefined instant T1, distance between the first pursuer and the evader is
measured; at an instant T2, the distance between the second pursuer and the evader. Pursuers are
coordinated, and their objective is to minimize the payoff function which is the minimum of these
two distances. One can unite the pursuers into a single player, which we call the first player. The
second player is identified with the evader, he maximizes the cost function. The motivation for
this problem is related [1, 4] to a space pursuit problem where the instants T1 (T2) are rendezvouz
instants for the first (second) pursuer with the evader along their nominal trajectories. In [2, 3], the
authors distinguished and numerically studied qualitatively different possibilities for solving this
problem.

The simplest case is the case of “strong” pursuers when both pursuers exceed the evader in their
dynamic capabilities. The hardest are cases when the dynamic advantage passes from the evader
to the pursuers or vice versa during the game. Here, in particular, there appear level sets of the
value function whose time sections are not single-connected, but as the reverse time increases they
become single-connected again.

The essential problem here is to construct optimal (or quasioptimal) methods of control for
the players with the feedback principle. The existing ideology of the theory of differential games
presupposes for this case either storing the entire value function or its fast computation in the
neighborhood of the current position. The optimal control in this case is constructed with some
version of the generalized gradient for the value function [5–10].

In linear differential games with a convex payoff function, a simpler approach to constructing
optimal control is possible [11–13], an approach that employs switching lines and surfaces. When
we speak of switching lines or surfaces, we mean a partition of the phase space at every time instant
into regions in each of which the controlling influence takes one of its limit values. Only boundaries
of these regions are stored in memory, without the values of the value function. In a problem with
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two pursuers and one evader, the payoff function is not convex, but in [2, 3] the authors attempted
to construct optimal (quasioptimal) strategies for the players anyway, with switching lines. For the
case of strong pursuers, the corresponding statements related to the proof of optimality are shown
in [2].

In this work, we consider the case of “weak” pursuers. We assume that T1 = T2. For this case,
we formulate and prove statements regarding a quasioptimal control method for the first player
based on switching lines. The method is stable with respect to numerical errors and measurement
errors for the current phase state of the system. The case of weak pursuers for T1 �= T2 is somewhat
more complex, and we do not consider it here.

We note that currently there are many publications that study group pursuit problems [14–25].
These problems are hard primarily due to the large dimension of the phase vector and the fact that
the payoff function is nonconvex. Therefore, these works usually make rather strong assumptions
regarding the objects’ dynamics (for instance, they consider objects with simple motions), their
initial states and so on. In this work, where the number of objects is small, we attempt to get an
exact solution without any significant simplifications.

2. PROBLEM SETTING

Pursuers P1, P2 and evader E move along a straight line. The dynamics of pursuers is given by
the following relations:

z̈P1 = aP1 , |u1| � μ1, z̈P2 = aP2 , |u2| � μ2,

ȧP1 = (u1 − aP1)/lP1 , aP1(t0) = 0; ȧP2 = (u2 − aP2)/lP2 , aP2(t0) = 0.
(1)

Here zP1 and zP2 are geometric coordinates of the pursuers; aP1 and aP2 are their accelerations
caused by controls u1 and u2. Time constants lP1 and lP2 determine how fast the control is
processed. The dynamics of the evader E is similar:

z̈E = aE, ȧE = (v − aE)/lE , |v| � ν, aE(t0) = 0. (2)

To compare dynamic capabilities, we introduce parameters [1, 4] ηi = μi/ν, ε = lE/lPi , i = 1, 2.
In this work, we study the case of weak pursuers, when ηi � 1, ηiεi � 1, i = 1, 2, and for every i at
least one of these inequalities is strict.

Let us fix an instant T . At this instant, we compute pursuer misses with respect to the evader:

rP1,E(T ) =
∣
∣zE(T )− zP1(T )

∣
∣, rP2,E(T ) =

∣
∣zE(T )− zP2(T )

∣
∣. (3)

Suppose that pursuers are coordinated. We unite them into a single player P whom we will
call the first player. Player P has a vector control u = (u1, u2)

T. Here and in what follows the
superscript T denotes transposition. We regard the evader as the second player. As the payoff
function we take the minimum of two misses:

ϕ = min{rP1,E(T ), rP2,E(T )}. (4)

At every instant t, both players have exact information regarding all phase coordinates zP1 , żP1 ,
aP1 , zP2 , żP2 , aP2 , zE , żE , aE. We denote the vector composed of these values by z. The first
player chooses his feedback control in order to minimize the value of the payoff function ϕ, while
the second player maximizes the payoff.

We will assume that the game occurs during the interval [t̄, T ], where t̄ < T . Let Y = [t̄, T ]×R2

be the game space.
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Following [6, 8], as admissible first player strategies we consider arbitrary functions (t, z) �→
U(t, z) with values in the set

{

(u1, u2) : |u1| � μ1, |u2| � μ2

}

. We denote by z
(

· ; t0, x0, U,Δ, v(·)
)

the step-by-step motion of system (1), (2) from position (t0, x0), when the first player applies
strategy U in the discrete control scheme with step Δ > 0, and the second player implements a
measurable control v(·) with values

∣
∣v(t)

∣
∣ � ν. The term “discrete scheme” means the following.

We choose a grid of moments ts with a certain step Δ (starting from the instant t0). Knowing at
time instant ts the system position z(ts), the first player computes his control u= U

(

ts, z(ts)
)

. This
control remains constant until time instant ts+1= ts +Δ. In position

(

ts+1, z(ts+1)
)

, a new value
for the controlling influence is computed, and so on.

Let
Γ(t0, z0, U,Δ) = sup

v(·)
ϕ
(

z(T ; t0, z0, U,Δ, v(·))
)

.

Here the supremum is taken over all measurable functions t �→ v(t) bound by the constraint
∣
∣v(t)

∣
∣ � ν. The value ϕ

(

z(T )
)

is the value of the payoff function (3), (4) at the termination instant T
on the motion z

(

· ; t0, z0, U,Δ, v(·)
)

.

The value Γ(t0, z0, U,Δ) has the meaning of the first player’s guaranteed result by strategy U
for the starting position (t0, z0) in a discrete control scheme with step Δ. The best guaranteed
result for the first player for starting position (t0, z0) is given by formula

Γ(t0, z0) = min
U

lim
Δ→0

Γ(t0, z0, U,Δ),

where lim denotes the upper limit. It is shown in [6, 8] that the minimum over admissible strate-
gies U is reached.

It is known that the best guaranteed result Γ(t0, z0) for the first player coincides with the
symmetrically defined best guaranteed result for the second player. Therefore, the value Γ(t0, z0)
is also called the value V (t0, z0) of the value function at point (t0, z0).

In this work we will show how to construct a quasioptimal (i.e., close to optimal in guaranteed
result) first player strategy that would be suitable for all starting positions and stable to errors in
its numerical specification and measurement errors for the current system phase position.

3. PASSING TO A TWO-DIMENSIONAL DIFFERENTIAL GAME

We introduce difference geometric coordinates y1 = zE − zP1 , y2 = zE − zP2 . We rewrite motion
Eqs. (1), (2) and the payoff function (3), (4):

ÿ1 = aE − aP1 , ÿ2 = aE − aP2 ,
ȧP1 = (u1 − aP1)/lP1 , ȧP2 = (u2 − aP2)/lP2 ,
ȧE = (v − aE)/lE , |u2| � μ2,
|u1| � μ1, |v| � ν, ϕ = min{|y1(T )|, |y2(T )|}.

(5)

Phase variables of system (5) are y1, ẏ1, aP1 , y2, ẏ2, aP2 , aE; u1 and u2 are first player controls;
v is the second player control. The payoff function ϕ depends on coordinates y1 and y2 at the
instant T .

The standard approach to studying linear differential games with fixed termination instant and
payoff function depending on some subset of objective components in the phase vector at the
termination instant includes passing to new phase variables (see, e.g., [6, 8]). These variables are
understood as values of objective components predicted for the termination instant under zero
players’ controls. They are often called zero effort miss coordinates [4, 26]. In our case, we pass
to new phase coordinates x1 and x2, where xi(t) is the value of yi predicted at the termination
instant T , i = 1, 2.
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Fig. 1. Graphs of functions c1(t) and c2(t). Parameter values: (a) η1 < η2 < 1, η1ε1 � η2ε2 � 1; (b) η1 < η2 < 1,
η2ε2 < η1ε1 � 1.

The formula for recomputing the coordinates is

xi = yi + ẏiτ − aPil
2
Pi
h(τ/lPi) + aEl

2
Eh(τ/lE), i = 1, 2. (6)

Here xi, yi, ẏi, aPi , and aE depend on the time t; τ = T−t. Function h is defined by relation h(α) =
e−α + α− 1. We have xi(T ) = yi(T ). We denote by X(t, z) the two-dimensional vector composed
of variables x1 and x2 defined according to (6).

The dynamics is written in new coordinates x1 and x2 as follows [1]:

ẋ1 = −lP1h(τ/lP1)u1 + lEh(τ/lE)v, |u1| � μ1,

ẋ2 = −lP2h(τ/lP2)u2 + lEh(τ/lE)v, |u2| � μ2, |v| � ν.
(7)

The payoff function has the form ϕ
(

x1(T ), x2(T )
)

= min{|x1(T )|, |x2(T )|}.
Let x = (x1, x2)

T. Let V (t, x) be the value function magnitude for game (7) in position (t, x).
It is known that V (t, z) = V

(

t,X(t, z)
)

. This relation allows us to find the value function for the
original game (1)–(4) by using the value function of game (7). Transformation (t, z) �→ x = X(t, z)
also helps to recalculate feedback control in game (7) into the corresponding control in game (1)–(4).

For every c � 0 the level set Wc =
{

(t, x) : V (t, x) � c
}

of the value function for game (7)
is a solvability set in the considered game with result not exceeding c. This set also represents a
maximal stable bridge [6, 8] in the game with dynamics (7) and terminal set Mc =

{

(T, x) : |x1| � c,
|x2| � c

}

. We denote by Wc(t) = {x : (t, x) ∈ Wc} the t-section of set Wc at time instant t.

When studying this problem, it is useful to consider individual games: P1−E of the first pursuer
against the evader and P2 − E of the second pursuer against the evader. These games are one-
dimensional with respect to the phase variable. The dynamics of game P1 − E (P2 − E) is given
by the first (second) row in relations (7). The terminal payoff here is

∣
∣x1(T )

∣
∣ (

∣
∣x2(T )

∣
∣).

For individual games, we denote by ci(t), i = 1, 2, the value of the value function at instant t
at point xi = 0. The value ci(t) can be easily found by integrating the game dynamics Pi − E on
the interval [t, T ] for ui = +μi and v = +ν with initial condition xi(t) = 0 and computing the
value xi(T ). Different possibilities for the dependencies t �→ c1(t) and t �→ c2(t) are presented on
Fig. 1. Apart from the common point for t = T , the graphs can have at most one more common
point. In the case of identical pursuers we have c1(t) ≡ c2(t).

We write system (7) in vector form:

ẋ = D1(t)u1 +D2(t)u2 + E(t)v, |u1| � μ1, |u2| � μ2, |v| � ν, (8)

D1(t) =
(

−lP1h((T − t)/lP1), 0
)T

, D2(t) =
(

0, −lP2h((T − t)/lP2)
)T

,

E(t) =
(

lEh((T − t)/lE), lEh((T − t)/lE)
)T

.
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Further as the norm on the x1, x2 plane we take the norm ‖x‖∞ = max
{

|x1|, |x2|
}

. The distance
function is induced by this norm. We denote a closed α-neighborhood of a set A by O(α,A).

4. APPROXIMATING THE DIFFERENTIAL GAME

1. Together with system (8), we consider the approximating system

ẋ = D1(t)u1 +D2(t)u2 + E(t)v, |u1| � μ1, |u2| � μ2, |v| � ν, (9)

with piecewise constant functions

Di(t) = Di(tj), E(t) = E(tj), t ∈ [tj , tj+1), i = 1, 2, (10)

defined on some partition of the t axis with instants tj. We use system (9) for numerical con-
structions. The payoff function for the approximating game is the same as for the game with
dynamics (8). It satisfies the Lipshitz condition with constant λ = 1.

We denote by x(1)
(

t; t∗, x∗, u(·), v(·)
)

(abbr. x(1)(t)) the position of system (8) at the instant t if
its motion at the instant t∗ goes out of point x∗ due to admissible measurable controls u(·) and v(·).
Let x(2)

(

t; t∗, x∗, u(·), v(·)
)

(abbr. x(2)(t)) be a similar notation for the position of system (9).

The discrepancy between motions x(1)(·) and x(2)(·) at an instant t, caused by the difference in
dynamics (8) and (9), can be bounded from above by the value

χ(t∗, t) =
2∑

i=1

μi

t∫

t∗

∥
∥Di(s)−Di(s)

∥
∥
∞ds+ ν

t∫

t∗

∥
∥E(s)− E(s)

∥
∥
∞ds.

Let V (2)(t, x) be the value of the value function in the approximating game in position (t, x).
Since the phase variable does not occur in the right-hand side of system (9), the Lipshitz constant
for function x �→ V (2)(t, x) for any t � T coincides [27, pp. 110–111] with the Lipshitz constant of
the payoff function, i.e., coincides with the number λ = 1.

2. We also apply approximation (10) for individual one-dimensional differential games P1 −E,
P2−E. In order not to clutter the notation, we will use notation ci(t), i = 1, 2, introduced at the end

of Section 3, also for the values V
(2)
Pi−E(t, xi) of the value function in approximating individual games

at time moment t at point xi = 0 (i.e., we write ci(t) instead of a more accurate notation c
(2)
i (t)).

For approximating games, the relation between curves t �→ ci(t) remains the same as on Fig. 1. Let

c̃(t) = min
i=1,2

ci(t), c′(t) = max
i=1,2

ci(t). (11)

Obviously, for every position (t, x) it holds that

V (2)(t, x) � min
i=1,2

V
(2)
Pi−E(t, xi).

Consequently, for every point x on the vertical (horizontal) axis we have V (2)(t, x) � c1(t)
(

V (2)(t, x) � c2(t)
)

.

Suppose that for some instant t the minimum in (11) is achieved for i = 1. Let us show that for
every x on the x2 (x1) axis it holds that

V (2)(t, x) = c̃(t)
(

V (2)(t, x) ∈ [c̃(t), c′(t)]
)

. (12)

Indeed, for points on the x2 (x1) axis it holds that V
(2)(t, x) � c̃(t)

(

V (2)(t, x) � c′(t)
)

. Consider
a point x on the positive part of the x2 axis (x1 axis). Let v = +ν. Then on the interval [t, T ]
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motion of system (9) for any control u(·) will occur in the first quadrant, and at time instant T we
get x2(T ) � c2(t) (x1(T ) � c1(t)). Consequently,

V (2)(t, x) � min
u(·)

min
i=1,2

∣
∣xi(T )

∣
∣ � min

i=1,2
ci(t) = c̃(t).

Thus, for the considered point x on the x2 (x1) axis (12) holds. If point x lies on the negative part
of the x2 (x1) axis, we let v = −ν, and then the motion of system (9) occurs in the third quadrant.
The considerations in this case are similar.

If at instant t the minimum in (11) is reached for i = 2 then V (2)(t, x) = c̃(t) for all points on
the x1 axis and V (2)(t, x) ∈ [c̃(t), c′(t)] for points on the x2 axis.

In the case of identical pursuers (i.e., when μ1 = μ2, lP1 = lP2) we have c1(t) ≡ c2(t). In the
case of different pursuers, without loss of generality we will assume that η1 < η2. If we also have
η2ε2 < η1ε1 then there exists a unique instant t∇ < T such that c1(t

∇) = c2(t
∇). On the interval

(t∇, T ) the minimum in (11) is achieved for i = 1; on the interval (−∞, t∇), for i = 2. Corre-
spondingly, for t ∈ (t∇, T ) the value V (2)(t, x) on the x2 axis equals c̃(t), and for t < t∇ the value
V (2)(t, x) on the x1 axis is c̃(t). If η1ε1 � η2ε2 then for every t < T the minimum in (11) is achieved
for i = 2. The value V (2)(t, x) on the x1 axis equals c̃(t).

3. To find function V (2), we use a numerical algorithm for backward construction of t-sections

W
(2)
c (t) =

{

x : V (2)(t, x) � c
}

for its level sets. The algorithm that takes into account the specifics
of a plane has been developed by S.A.Ganebnyi. A description of the backward procedure is
presented in [2, 3].

In this work, we give numerically constructed examples for a game with the following parameters:

η1 = 0.7, η2 = 0.95, ε1 = 1.3, ε2 = 0.4, T = T1 = T2 = 15. (13)

Figure 2 shows the evolution of set W
(2)
c (t) for c = 5.0 with time. We denote by the sym-

bol τ = T − t the reverse time. The top left picture corresponds to the instant τ = 0 when the
game halts. The level set section at this instant represents a cross with infinite crossbeams. The
top middle picture shows an intermediate reverse time instant, when infinite crossbeams have not
yet disappeared but have become thinner. The top right picture shows the reverse time instant
slightly later than the instant τ1 = T − t1 when horizontal crossbeams disappear. At the instant
τ1, value of the value function on the horizontal axis equals 5.0, except for the points of the axis

that are internal points for the set W
(2)
5.0 (t1). On the left picture in the second row, we can see how

angles of the set become more flat. The central picture shows the t-section configuration after the
instant τ2 = T − t2, when the vertical infinite band disappears, and the t-section breaks down into
two trapezoids. At the instant τ2, the value of the value function on the vertical axis is the same
and equals 5.0. Then the trapezoids become pentagons (right picture in the second row). Slanted
sides of the pentagons reduce, and finally the pentagons become rectangles (bottom left picture).
Rectangles continue to reduce until the level set’s t-section becomes empty.

Figure 3a shows the picture of W
(2)
c (t) sections computed at the instant t = 9.35 (τ = 5.65) for

the set of values c in the range from 0 to 40 with step Δc = 1.0. A similar picture of the sections
for t = 1.65 (τ = 13.35) is shown on Fig. 3b. The first of the considered instant exceeds the instant
t∇ ≈ 4.35; the second one comes before.

4. For every c � 0 and t � T , the set W
(2)
c (t) (if it is nonempty) is symmetric with respect

to the origin of the x1, x2 plane, since both dynamics (9) (together with control constraints) and
the payoff function possess this property. In the case of identical pursuers we additionally have a
symmetry with respect to the bisecting line of the second and fourth quadrants.

We denote by cmin(t) the value of the minimum of function V (2)(t, ·) on the x1, x2 plane at

time moment t. For c ∈ [cmin(t), c̃(t)) the set W
(2)
c (t) consists of two bounded disjoint subsets. Let

AUTOMATION AND REMOTE CONTROL Vol. 75 No. 10 2014
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Fig. 2. Change of the set W
(2)
5.0 (t). Symbol τ = T − t denotes reverse time.

Fig. 3. t-sections of the level sets of the value function: (a) τ = 5.65; (b) τ = 13.35.
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W
(2)
c,II(t) (W

(2)
c,IV(t)) be the subset located at the second (fourth) quadrant. Let

Z(t) = W
(2)
cmin(t)

(t), ZII(t) = W
(2)
cmin(t),II

(t), ZIV(t) = W
(2)
cmin(t),IV

(t).

In the case η1 < η2, for η1ε1 � η2ε2 sets ZII(t) and ZIV(t) are vertical segments. If η2ε2 < η1ε1
then for small τ they are horizontal segments. As τ increases, these sets turn to points and then
become vertical segments. As t decreases, the set Z(t) always gets further from the origin, and the
minimal value cmin(t) of the value function increases.

An important property of system (8) is that the directions of vectors D1(t) and D2(t) do not
change with time. Vectors D1(t) and D2(t) that approximate system (9) also have this property,
namely vector D1(t) (D2(t)) is directed horizontally (vertically) opposite to the direction of the x1
(x2) axis. In particular, this property causes new horizontal and vertical plates to appear at the

boundary of set W
(2)
c (t) when it becomes discontinuous.

5. SWITCHING LINES

Suppose now that pursuers P1 and P2 are different, and η1 < η2. In the special case of identical
pursuers our constructions will be simplified; see the corresponding remark at the end of the section.

1. Under the assumption that η2ε2 < η1ε1, let us consider an arbitrary instant t ∈ (t∇, T ).
Slicing the plane x1, x2 with horizontal lines, we see that the minimum of the restriction of function
V (2)(t, ·) on each such line is realized either at a point or on a segment. In particular, if the straight

line does not intersect the set ciW
(2)
c̃(t)(t) = cl

(

intW
(2)
c̃(t)(t)

)

(here int denotes the interior of the set,

cl denotes closure) then the minimum is realized at a point on the x2 axis.

If a straight line intersects the set intW
(2)
c̃(t)(t) but does not intersect the set Z(t) of the global

minimum of function V (2)(t, ·), then the minimum is reached on the segment which is for some

c ∈ (cmin(t), c̃(t)) a plate on the boundary of set W
(2)
c (t). For a straight line going through the

set Z(t) the minimum of the restriction is reached on the intersection of the straight line with this
set. In any case, as we get further from the minimum segment, the value function increases. At
the edges of the horizontal line, the value function is constant.

These facts have been established by a careful study of the results of our numerical construction
of the value function’s level sets in game (9).

For t ∈ (t∇, T ), we define the continuous switching line Π(1, t) for control u1 as follows. We

begin by defining it in the second quadrant in the set ciW
(2)
c̃(t)(t). The set ZII(t) is either a horizontal

or a vertical segment. In the latter case we include it in the line Π(1, t). At the boundary of the

set W
(2)
c,II(t), c ∈ [cmin(t), c̃(t)) we distinguish an upper horizontal plate. It belongs, either partially

or completely, to the upper side of the rectangle O
(

α,ZII(t)
)

for some α � 0. We note the middle
point of the intersection of such two segments and take it as a point on the line Π(1, t). Below
the ZII(t) segment, we define the next portion of the switching line as a vertical line segment that

ends at the boundary of the set W
(2)
c̃(t)(t). Each of its points belongs to the lower horizontal plate

on the boundary of some set W
(2)
c,II(t), c ∈ [cmin(t), c̃(t)). Then we prolong the switching line with

a horizontal segment that follows the boundary of set W
(2)
c̃(t)(t) up until the vertical axis. In the

fourth quadrant, we define the switching line Π(1, t) in the set ciW
(2)
c̃(t)(t) similarly to the above,

symmetric with respect to the origin. Outside the set ciW
(2)
c̃(t)(t) we assume that the line Π(1, t)

follows the x2 axis.

Results of our numerical constructions for the line Π(1, t) are presented on Fig. 4a. Constructions

have been made on some grid of level sets W
(2)
c for the function V (2). We show 10 sections W

(2)
c (t).
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Fig. 4. Switching lines for an instant t ∈ (t∇, T ): (a) Π(1, t), (b) Π(2, t).

The fourth section in increasing order corresponds to the value c = c̃(t); the sixth, to the value
c = c′(t).

The behavior of the value function restriction to vertical lines is in many respects similar. The
value function restriction is minimized either at a point or on a segment. One exception is the x2
axis; on this axis, the value of the value function is constant and equals c̃(t). For vertical straight

lines that do not intersect the set ciW
(2)
c′(t)(t), the minimum is realized at the point where the line

intersects with the x1 axis. If the vertical line does intersect the set intW
(2)
c′(t)(t) but does not

intersect the set Z(t), the minimum is reached on a plate located at the boundary of set W
(2)
c (t)

for some c ∈ (cmin(t), c
′(t)). For a straight line passing through Z(t) the minimum is realized at

the intersection of the line with this set. As in the case of horizontal straight lines, as we go further
away from the interval, the value function minimum increases. There also exist intervals where it
is constant; two such infinite intervals lie at the ends of the line.

We define the switching line Π(2, t) for t ∈ (t∇, T ) in the second quadrant in the set ciW
(2)
c′(t)(t)

to the left from segment ZII(t), using middle points of intersections of the left plates at the bound-

aries of sets W
(2)
c (t), c ∈ [cmin(t), c

′(t)), with left sides of the rectangles O
(

α,ZII(t)
)

, α � 0. If a
segment ZII(t) is horizontal, we include it in the line Π(2, t). To the right from the interval ZII(t),
we take a segment of the switching line as a horizontal segment that reaches up to the vertical

axis. In the fourth quadrant, in the set ciW
(2)
c′(t)(t) we define the switching line Π(2, t) similar to

the above, symmetrically with respect to the origin. Outside the set ciW
(2)
c′(t)(t) we assume the

line Π(2, t) to go along the x1 axis. Result of a numerical construction of the Π(2, t) line is shown
on Fig. 4b.

If t � t∇ for η2ε2 < η1ε1 and if t < T for η1ε1 � η2ε2, then switching lines Π(1, t) and Π(2, t) are
defined with horizontal and vertical lines, taking into account that the value c̃(t) is realized on the
horizontal axis x1, and the value c′(t) corresponds to the value of the value function at the ends of
the x2 axis.

We denote by Π+(1, t) (respectively Π−(1, t)) the part of the plane located strictly to the right
(strictly to the left) of the switching line Π(1, t). If x ∈ Π+(1, t) (x ∈ Π−(1, t)) then control
u1 = +μ (u1 = −μ) directs the vector D1(t)u1 to the switching line, i.e., to the side where the
value function V (2)(t, ·) decreases. We introduce a similar notation Π+(2, t) (respectively Π−(2, t))
for the part of the plane above (below) the switching line Π(2, t).
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Fig. 5. Sets Z(t), K(1, t), K(2, t) and their α-neighborhoods for an instant t ∈ (t∇, T ). Segments Z(t) of the
global minimum of the value function V (2)(t, ·) are highlighted by line width.

2. In what follows, we treat lines Π(1, t) and Π(2, t) as found exactly for the approximating
system (9). It will become clear that they define optimal feedback control in system (9) and
quasioptimal (i.e., close to optimal) feedback control in system (8). In reality, we cannot construct
perfect switching lines Π(1, t) and Π(2, t) numerically. For instance, even if we construct the

sets W
(2)
c (t) exactly, we still operate with some step with respect to parameter c. As a result, we

get polylines that only approximate the perfect switching line, so there arises a problem of the
guarantee that they provide for the first player.

3. For every t < T and every horizontal (vertical) line passing through the point x, we denote
by V(1, t, x) (respectively V(2, t, x)) the minimal value of the value function V (2)(t, ·) on this line.
We have V(1, t, x) = V (2)(t, x) for x ∈ Π(1, t) and V(2, t, x) = V (2)(t, x) for x ∈ Π(2, t).

We fix a number r � 0 and “extend” the line Π(1, t), superimposing the centers of horizontal
segments of length 2r on it. We denote the resulting set by Πr(1, t). Similarly, but with vertical
segments, we define the set Πr(2, t).

We introduce this geometric r-extension for perfect switching lines in order to cover the case
when they are constructed imprecisely. By this extension, we aim to “encircle” switching lines
Π(1, t) and Π(2, t) with regions that “cover up” construction errors or imprecisions in the system
position measurement. Here for control u1 it is convenient to use the horizontal extension since
on any horizontal line the value V(1, t, x) remains the same for all x on this line. If as a result of
computations we get a value of V(1, t, x∗) at a certain point x∗ at an instant t, and point x∗ is
horizontally apart from the line Π(1, t) by at most distance r, we get an upper bound on the value
V (2)(t, x∗): V (2)(t, x∗) � V(1, t, x∗) + λr. Similarly, for control u2 it is convenient to consider a
vertical extension.

The above-described approach does not give an efficient “encircling” at an instant t ∈ (t∇, T )
on two horizontal segments of the line Π(1, t) and the (one) vertical segment of the line Π(2, t). At
time instant t∇, two horizontal segments of the line Π(1, t) converge into one segment located at
the x1 axis. For t < t∇, the line Π(1, t) has only one horizontal segment, while the line Π(2, t) has
two vertical segments.

We denote the above-mentioned segments by K(1, t) for line Π(1, t) and K(2, t) for line Π(2, t).
It is very important that on the lines K(1, t) and K(2, t) the value of the value function remains
the same and equals c̃(t).

4. For what follows, we need to “prohibit” a fast transition of the motions of systems (8) and (9)
from set Πr(1, t) to set Πr(2, t) and from set Πr(2, t) to set Πr(1, t) outside of some neighborhood
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of the intersection of lines Π(1, t) and Π(2, t). Let us consider the α-neighborhood O
(

α,Z(t)
)

and
O
(

α,K(i, t)
)

of the sets Z(t) and K(i, t), i = 1, 2 (Fig. 5). Let

Πr
α(i, t) = cl

[

Πr(i, t)\
(

O
(

α,Z(t)
)⋃

O
(

α,K(i, t)
))]

, α � 0, i = 1, 2.

Lines Π(1, t) and Π(2, t), t < T , depend on time continuously. Therefore, for every instant
t̂ ∈ [t̄, T ) there exist values α̂ > 0 and r̂ > 0 such that

Πr
α(1, t)

⋂

Πr
α(2, t) = ∅, t ∈ [t̄, t̂ ], α � α̂, r ∈ [0, r̂]. (14)

Moreover, for the said values t, α, and r there exists a lower bound θ(t̂, α̂, r̂) > 0 on the transition
time of systems (8) and (9) from one of the sets Πr

α(1, ·) and Πr
α(2, ·) to another.

Remark . If pursuers are identical then c1(t) ≡ c2(t). Consequently, c̃(t) ≡ c′(t). All construc-
tions become symmetrical with respect to the bisecting line of the second and fourth quadrants.
The set K(1, t) is a segment on the x2 axis centered at the origin, while the set K(2, t) is a segment
on the x1 axis. The set Z(t) consists of two points on the bisecting line of the second and fourth
quadrants.

6. AUXILIARY STATEMENTS

We formulate two lemmas; their proofs are given in the Appendix. Lemmas will be used to
prove theorems on the guaranteed estimate when the first player in system (8) employs the control
method based on switching lines constructed in system (9).

Let σi = max
{

‖Di(t)‖∞ : t ∈ [t̄, T ]
}

, i = 1, 2; σ = max{σ1, σ2}; μ = max{μ1, μ2}.
Lemma 1. Fix i = 1, 2. Suppose that position (t∗, x∗) ∈ Y and number δ > 0, t∗ + δ < T , are

such that x∗ ∈ Π+(i, t∗) (x∗ ∈ Π−(i, t∗)), and any motion of system (9) starting at the instant t∗
from point x∗, at every instant t ∈ [t∗, t∗ + δ] remains in the set Π+(i, t) (Π−(i, t)). Consider on
the interval [t∗, t∗ + δ] the motion x(1)(·) of system (8) that at the instant t∗ goes out of point x∗
under the action of some second player control v(·) and first player control u(·) such that ui ≡ +μi

(ui ≡ −μi) except perhaps the interval [t∗, t∗ + ω] of length ω � δ.

Then for each t ∈ [t∗, t∗ + δ] it holds that

V
(

ī, t, x(1)(t)
)

� V (2)(t∗, x∗) + 2λωσiμi + λχ(t∗, t). (15)

Here ī = 2 if i = 1, and ī = 1 if i = 2.

Comment . Suppose that i = 2, and we have chosen the + sign among the variants + and −.
Then x∗ ∈ Π+(2, t), and this agrees with our assumption regarding the form of the “correct”
control u2(·), which differs from u2 ≡ +μ2 only on an interval of size ω. An admissible control
u1(·) is arbitrary. The value ω defines the value of the second term in the right-hand side of
estimate (15). The third term is a standard addition that bounds from above the increment of the
cost function V (2) caused by the difference in dynamics of systems (8) and (9).

Lemma 2. Let (t∗, x∗) ∈ Y , t∗ ∈ (t∗, T ) and 0 � ω � t∗ − t∗. Suppose that along the mo-
tion x(1)(·) of system (8) that at the instant t∗ goes out of point x∗ under the action of admissible
controls u(·) and v(·) for each i = 1, 2 it holds that

1) either x(1)(t) ∈ Π+(i, t) on the interval (t∗, t∗) and ui(t) = +μi on (t∗ + ω, t∗);
2) or x(1)(t) ∈ Π−(i, t) on the interval (t∗, t∗) and ui(t) = −μi on (t∗ + ω, t∗).
Then for each t ∈ [t∗, t∗] it holds that

V (2)(t, x(1)(t)
)

� V (2)(t∗, x∗) + 2λωσμ+ λχ(t∗, t). (16)
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7. GUARANTEED RESULT THEOREMS

7.1. Guaranteed Result Estimate for a Multivalued First Player Strategy

For i = 1, 2, α > 0, r � 0, and t ∈ [t̄, T ) we let

S(i, α, r, t) = O
(

α,Z(t)
)⋃

O
(

α,K(i, t)
)⋃

Πr
α(i, t).

We introduce a multivalued strategy (t, x) �→ U(t, x) for the first player. We will assume that
Ui(t, x) =

{

ui : |ui| � μi
}

if x ∈ S(i, α, r, t), i = 1, 2. Outside the set S(i, α, r, t), t < T , component
Ui(t, x), i = 1, 2, for strategy U is uniquely defined, namely: at position (t, x) the corresponding
value ui, i = 1, 2, which is equal to +μi or (−μi), is chosen to be such that the vector Di(t)ui
is directed towards the set S(i, α, r, t). Note that for every point x /∈ S(i, α, r, t) the horizontal
direction from this point for i = 1 (vertical direction for i = 2) towards the set S(i, α, r, t) is unique
and coincides with the direction towards the switching line Π(1, t) (Π(2, t)).

Let us fix a time moment t̂ ∈ [t̄, T ). By t̂, we find α̂ > 0 and r̂ ∈ (0, α̂) so that on [t̄, t̂ ] a lower
bound θ(t̂, α̂, r̂) > 0 holds for the transition time for systems (8) and (9) from each of the sets
Πr̂

α̂(1, ·) and Πr̂
α̂(2, ·) to another. Then bound θ(t̂, α̂, r̂) on the transition time also hods for α � α̂,

r ∈ [0, r̂]. In what follows we assume that these relations do hold. We fix an arbitrary positive
ϑ < θ(t̂, α̂, r̂). We denote ĉ = c′(t̂).

Suppose that the first player applies in system (8) the strategy U in the discrete scheme with step
Δ � ϑ. At every instant ts of the discrete scheme, the first player chooses control u ∈ U

(

ts, x(ts)
)

and holds it constant on the interval [ts, ts +Δ).

Let us estimate the increment of function V (2) along the motion x(1)(·) going at an instant
t0 ∈ [t̄, T ) out from the point x0 and generated by first player strategy U in the discrete scheme
with step Δ together with some admissible second player control v(·).

Let Πr
α(t) = Πr

α(1, t)
⋃
Πr

α(2, t) and K(t) = K(1, t)
⋃
K(2, t).

1. We introduce the following time intervals.

1. Interval Tz = [tz, t
z] from the time instant tz when the point x(1)(t) first reaches the set

O
(

α,Z(t)
)

to the instant tz when it last leaves it. If Tz = ∅ we let tz = t0.

2. Interval Tk = [tk, t
k] from the instant tk when the point x(1)(t) first reaches the set O

(

α,K(t)
)

to the instant tk when it last leaves it. We consider this interval only when tk ∈ [tz, t̂).

3. Interval Tĉ = [tĉ, t
ĉ] from the instant tĉ when the point x(1)(t) first reaches the set

O
(

α,W
(2)
ĉ (t)

)

for t � t̂ to the instant tĉ when it last leaves it.

4. Interval T� = [t�, t
�] for t� � t̂. We assume that x(1)(t�) ∈ Πr

α(t�) and x(2)(t�) ∈ Πr
α(t

�). We
also suppose that interval T� is located to the right of the instant tz and outside the interval Tk.
We assume that interval T� has maximal length under all these assumptions.

2. We write estimates on the changes in function V (2) along the motion x(1)(·). We denote by
Var

(

V (2), [t∗, t∗]
)

the increment of function V (2) on the interval [t∗, t∗]. We first consider intervals
Tz, Tk, Tĉ.

At the instant tz we have

V (2)(tz, x(1)(tz)
)

� cmin(t
z) + λα � V (2)(t0, x0) + λα. (17)

For the instant tk it holds that V (2)
(

tk, x(1)(tk)
)

� c̃(tk) + λα � c̃(tk) + λα. Since c̃(tk) �
V (2)

(

tk, x
(1)(tk)

)

+ λα, we get that

Var
(

V (2), [tk, t
k]
)

� 2λα. (18)
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For the instant tĉ it holds that

V (2)(tĉ, x(1)(tĉ)
)

� ĉ+ λα. (19)

3. It is not so easy to estimate the increment V (2) along the motion x(1)(·) on the interval T�.
To be definite, suppose that x(1)(t�) ∈ Πr

α(1, t�).

Let t1 = t�. We denote by t1+ the largest instant that belongs to time interval [t1, t1+ϑ]
⋂
[t1, t

�]
for which x(1)(t) ∈ Πr

α(t). Since in time ϑ it is impossible to transit from set Πr
α(1, ·) to set Πr

α(2, ·),
it means that x(1)(t1+) ∈ Πr

α(1, t1+). To estimate the value V (2)
(

t1+, x
(1)(t1+)

)

we use Lemma 1.

Suppose that t1+ < t�. Let t2 be the smallest time instant from the interval [t1 + ϑ, t�] such that
x(1)(t) ∈ Πr

α(t). Here both the case when x(1)(t2) ∈ Πr
α(1, t2) and the case when x(1)(t2) ∈ Πr

α(2, t2)
are possible. In both cases, the point x(1)(t) on time interval (t1+, t2) is located outside the set
S(1, α, r, t)

⋃
S(2, α, r, t). To estimate the value Var

(

V (2), [t1+, t2]
)

, we use Lemma 2.

If t2 < t�, we introduce the time instant t2+ defined as the largest instant from the inter-
val [t2, t2 + ϑ]

⋂
[t2, t

�] such that x(1)(t) ∈ Πr
α(t). In case x(1)(t2) ∈ Πr

α(1, t2) we have x(1)(t2+) ∈
Πr

α(1, t2+). In case x(1)(t2) ∈ Πr
α(2, t2) we have x(1)(t2+) ∈ Πr

α(2, t2+). Suppose that t2+ < t�.
Then we introduce the time instant t3 as the smallest instant from the interval [t2 + ϑ, t�] such that
x(1)(t) ∈ Πr

α(t), and so on.

On intervals of the form [tj, tj+], by Lemma 1 we get that

V
(

i, tj+, x
(1)(tj+)

)

� V (2)(tj, x
(1)(tj)

)

+ 2λΔσμ + λχ(tj, tj+). (20)

Here i = 1 if x(1)(tj) ∈ Πr
α(1, tj). Control u2 under strategy U can be chosen “incorrectly” only

on some interval [tj, tj + ω], where ω � Δ. If x(1)(tj) ∈ Πr
α(2, tj) then in the left-hand side of

inequality (20) we take i = 2.

Passing from the value V
(

i, tj+, x
(1)(tj+)

)

to the value V (2)
(

tj+, x
(1)(tj+)

)

, we have the following

inequality: V (2)
(

tj+, x
(1)(tj+)

)

� V
(

i, tj+, x
(1)(tj+)

)

+ λr. Therefore,

Var
(

V (2), [tj , tj+]
)

� 2λΔσμ + λr + λχ(tj , tj+). (21)

For intervals of the form [tj+, tj+1], based on Lemma 2 for ω � Δ we get

Var
(

V (2), [tj+, tj+1]
)

� 2λΔσμ+ λχ(tj+, tj+1). (22)

Due to relations (21) and (22) it holds that

Var
(

V (2), [tj , tj+1]
)

� 4λΔσμ + λr + λχ(tj , tj+1).

On the interval [t�, t
�] we have at most [(t� − t�)/ϑ] (here and in what follows [·] denotes the

whole part of a number) of complete intervals of the form [tj, tj+1]. The last interval that ends at
time instant t� can be an interval of the form [tj, tj+], where tj+ − tj � ϑ. We get the bound

Var
(

V (2), [t�, t
�]
)

�
([

t� − t�
ϑ

]

+ 1

)

(4λΔσμ + λr) + λχ(t�, t
�). (23)

4. Interval [tz, t̂ ] can contain at most two intervals of the form T� divided by the interval Tk. We
denote the first of them by [t�1, t

�1]; the second, by [t�2, t
�2]. On intervals (tz, t�1), (t

�1, tk), (t
k, t�2),

and (t�2, t̂) the point x(1)(t) is located outside the set S(1, α, r, t)
⋃
S(2, α, r, t). Therefore, on each
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such interval we can estimate the increment of function V (2) with Lemma 2, letting ω � Δ. By
doing so and taking into account estimates (17), (18), and (23), we get that

Var
(

V (2), [t0, t̂]
)

�
([

t̂− t0
ϑ

]

+ 2

)

(4λΔσμ + λr) + 4× 2λΔσμ + 3λα+ λχ(t0, t̂). (24)

5. Consider the case when on the interval [t̂, T ) the point x(1)(t) falls into the set O
(

α,W
(2)
ĉ (t)

)

(in particular, x(1)(t̂) ∈ O
(

α,W
(2)
ĉ (t̂)

)

if t̂ ∈ Tk). At the instant tĉ we have estimate (19). For t � tĉ

point x(1)(t) is located outside the set O
(

α,W
(2)
ĉ (t)

)

. Since Z(t) ⊂ W
(2)
ĉ (t), K(t) ⊂ W

(2)
ĉ (t) and

r � α, for t � tĉ the motion x(1)(·) proceeds outside the set S(1, α, r, t)
⋃
S(2, α, r, t). Therefore,

this motion is subject to the “correct” first player control with respect to components ui, i = 1, 2,
except maybe only some interval [tĉ, tĉ + ω], where ω � Δ. Using Lemma 2, we get for t ∈ [tĉ, T ]
an estimate

V (2)(t, x(1)(t)
)

� ĉ+ λα+ 2λΔσμ+ λχ(tĉ, t). (25)

Suppose that on the interval [t̂, T ) point x(1)(t) does not fall into the set O
(

α,W
(2)
ĉ (t)

)

. Then

the motion x(1)(·) proceeds for t � t̂ outside the above-mentioned sets, and in estimate (24) we
increase the last term.

6. Thus, the final estimate for the instant T has the form

V (2)(T, x(1)(T )
)

� max
{

F (T ), L(T )
}

, (26)

F (T ) = V (2)(t0, x0)+

([

t̂− t0
ϑ

]

+2

)

(4λΔσμ+λr)+8λΔσμ+3λα+λχ(t0, T ),

L(T ) = ĉ+ λα+ 2λΔσμ+ λχ(t0, T ).

Since V (2)
(

T, x(1)(T )
)

= ϕ
(

x
(1)
1 (T ), x

(1)
2 (T )

)

, estimate (26) holds for the first player guaranteed
result when he uses in system (8) the strategy U in the discrete control scheme with step Δ.

Theorem 1. Consider an instant t̂ ∈ [t̄, T ) and parameters α̂ > 0 and r̂ > 0 such that there holds
a lower bound θ(t̂, α̂, r̂) > 0 on the transition time from each of the sets Πr

α̂(1, ·) and Πr
α̂(2, ·) to

another. Let α � α̂ and r ∈ [0, r̂]. Suppose that the multivalued strategy U defined with respect
to t on time interval [t̄, T ) takes value Ui(t, x) =

{

ui : |ui| � μi
}

in the set S(i, α, r, t), i = 1, 2.
Suppose that outside the set S(i, α, r, t) the value of Ui(t, x), equal to +μi or (−μi), is chosen to
be such that the vector Di(t)Ui(t, x) is directed towards the set S(i, α̂, r, t), i = 1, 2. Fix positive
ϑ < θ(t̂, α̂, r̂). Then for every starting position (t0, x0) ∈ Y the strategy U in the discrete control
scheme with step Δ � ϑ in system (8) guarantees the first player a result given by formula (26).

7.2. Stability of the Proposed Control Method

For i = 1, 2, t ∈ [t̄, t̂ ], and β > 0, in the neighborhood O
(

β,Π(i, t)
)

we draw an arbitrary con-
tinuous line π(i, t) which we will use to construct the component U∗

i of the first player strategy U∗.
Let x be some state at the instant t. Consider a ray with direction Di(t) outgoing from this point.
If it intersects the line π(i, t), we let U∗

i (t, x) = +μi; otherwise we take U∗
i (t, x) = −μi.

Take arbitrary ε > 0. We choose the instant t̂ from condition ĉ = c′(t̂) = ε/4. Suppose that
the number α̂ satisfies relation 3λα̂ = ε/2. We fix a number r̂ ∈ (0, α̂] so that on interval [t̄, t̂ ]
there exists a lower bound θ(t̂, α̂, r̂) > 0 on the transition time for motions of systems (8) and (9)
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from set Πr̂
α̂(1, ·) to set Πr̂

α̂(2, ·) and vice versa, from Πr̂
α̂(2, ·) to Πr̂

α̂(1, ·). Fix arbitrary positive
ϑ < θ(t̂, α̂, r̂). We find r∗ ∈ (0, r̂] and Δ∗ � ϑ such that

([
T − t̄

ϑ

]

+ 2

)

(4λΔ∗σμ+ λr∗) + 8λΔ∗σμ � ε

2
.

Let ξ1(t̂) (ξ2(t̂)) be a lower bound on the angle under which the line Π(1, t)\K(1, t)
(Π(2, t)\K(2, t)) intersects horizontal (vertical) straight lines at any time instant t ∈ [t̄, t̂ ]. Let
ξ(t̂) = min

{

ξ1(t̂), ξ2(t̂)
}

.

Let β∗ = r∗ sin ξ(t̂)/
√
2. One can show that β � β∗ satisfies the inclusions O

(

β,Π(i, t)
)

⊂
S(i, α̂, r∗, t), i = 1, 2, t ∈ [t̄, t̂ ]. The strategy U∗ corresponding to a value β is a uniquely de-
fined sample of multivalued strategy U defined by α̂ and r∗.

Due to (26) and the definition of values t̂, α̂, r∗, Δ∗, and β∗, we get that for β ∈ [0, β∗] strategy U∗

in the discrete scheme with step Δ ∈ (0,Δ∗] guarantees for every starting position (t0, x0) ∈ Y an
estimate

ϕ
(

x
(1)
1 (T ), x

(1)
2 (T )

)

� V (2)(t0, x0) + ε+ λχ(t0, T ). (27)

Estimates (26) and (27) are done for the case when to construct his control the first player at
an instant t knows the exact position x(1)(t) of system (8). Consider the case of imprecise mea-
surements. Suppose that first player instead of the true value x(1)(t) gets a measurement ζ(t) such
that

∥
∥ζ(t)− x(1)(t)

∥
∥
∞ � h. The player uses this measurement to compute his control U∗(t, ζ(t)

)

.
The following statement holds.

Theorem 2. For every ε > 0 one can find numbers γ∗ > 0, h∗ > 0, and Δ∗ > 0 such that if the
strategy U∗ in system (8) is constructed based on switching lines π(1, t) and π(2, t) located for every
t ∈ [t̄, T ) inside the sets O

(

γ∗,Π(1, t)
)

and O
(

γ∗,Π(2, t)
)

, the measurement error does not exceed h∗

and the step Δ > 0 of the discrete control scheme satisfies inequality Δ � Δ∗, then for every starting
position (t0, x0) ∈ Y and every realization v(·) of the second player control estimate (27) holds.

To prove the statement, take γ∗ � β∗/2 and h∗ � β∗/2.

8. MODELING RESULTS

To show the modeling results, we consider the motion of pursuers P1, P2 and evader E on a two-
dimensional plane. We call this plane the original geometric space. Suppose that in this motion, the
horizontal component of the velocity vector for each object remains constant. Suppose that these
components are such that the instants of horizontal passage of objects P1, E and objects P2, E
are the same and equal to T . Thus, controlling influences only work on the horizontal shift. The
dynamics of side motion is given by relations (1) and (2); the resulting miss is given by formula (4).
Figure 6 denotes the horizontal axis by d. The d coordinate shows the longitudinal position of
objects.

Game parameters are chosen according to (13). Starting side velocities and accelerations are
assumed to be zero: ż0P1

= ż0P2
= ż0E = 0, a0P1

= a0P2
= a0E = 0. The initial time instant t0 = 0.

The first player controls with the help of switching lines constructed in the approximating
system (9). He uses exact knowledge of all phase coordinates for the pursuers and the evader.

Figures 6a presents the trajectories of objects for initial values of side deviations zP1(t0) = 50,
zP2(t0) = −30. The second player control is realized with his switching lines, also constructed in
system (9). The construction procedure for the second player’s switching lines is described in [2].
Whether the second player control method based on his switching lines is close to optimal is a
problem that has not yet been carefully analyzed.
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Fig. 6. Object trajectories in the original geometric space: (a) when both players use quasioptimal controls;
(b) when the first player uses quasioptimal control and the second player uses random control.

Figure 6b shows the situation for the same initial deviations but for a random second player
control (on each step of the discrete control scheme, the second player uses a random control from
the interval [−ν,+ν]). Here the second player is caught exactly.

9. CONCLUSION

Control based on switching lines in a game problem that reduces to a two-dimensional (with
respect to the phase variable) differential game with fixed termination instant presupposes a par-
tition of the phase plane at every time instant into “cells” in whose internal points the controlling
influence is constant and takes one of the limit values. It is important what information related
to the value function should be given on switching lines that define the partition. In this work,
for a differential game with two pursuers and one evader we find a set of parameters for the prob-
lem (the case of “weak” pursuers) when no additional information, apart from the switching lines
themselves, is required to implement a suboptimal control method for the minimizing player. The
proposed approach to constructing a quasioptimal strategy is stable with respect to small compu-
tational errors in the construction of switching lines and also to informational errors in determining
the current phase state of the system. Previously a similar result has been obtained for the case of
“strong” pursuers, but the case of weak pursuers is much harder.
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APPENDIX

Proof of Lemma 1. To be definite, suppose that i = 2 and we have chosen the + sign from the
+ and − signs.

Together with the motion x(1)
(

· ; t∗, x∗, u(·), v(·)
)

of system (8), which in the formulation of

Lemma 1 was denoted as x(1)(·), we additionally consider the motion x(2)
(

· ; t∗, x∗, u(·), v(·)
)

(abbreviated x(2)(·)) of system (9) that develops under the same controls u(·) and v(·). Let
c∗ = V (2)(t∗, x∗). Fix an arbitrary instant t ∈ [t∗, t∗ + δ].
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With an open-loop control v(·) considered on time interval [t∗, t] we find an open-loop control
ust(·) so that

x
(2)
st (t) ∈ W (2)

c∗ (t), (A.1)

where x
(2)
st (·) = x

(2)
st

(

· ; t∗, x∗, ust(·), v(·)
)

is a motion of system (9) that at the instant t∗ goes out
of point x∗ under the action of controls ust(·) and v(·). This can always be done with the stability

property [6, 8] of the level set W
(2)
c∗ of the cost function V (2). Inclusion (A.1) means that

V (2)(t, x
(2)
st (t)

)

� V (2)(t∗, x∗). (A.2)

Consider a new control ûst(·) with components û1 st(·) = u1 st(·) and û2 st ≡ +μ2. Let x̂
(2)
st (·) be

a motion of system (9) that at the instant t∗ goes out of point x∗ under the action of controls ûst(·)
and v(·). The following relations hold:

x̂
(2)
1 st(t) = x

(2)
1 st(t), x̂

(2)
2 st(t) � x

(2)
2 st(t). (A.3)

Since points x̂
(2)
st (t) and x

(2)
st (t) are located in the set Π+(2, t), it means that (A.3) implies that

V (2)(t, x̂
(2)
st (t)

)

� V (2)(t, x
(2)
st (t)

)

. (A.4)

By the conditions of Lemma 1, the u2(·) component of vector control u(·) differs from a constant
control û2 st(t) ≡ +μ2 only on an interval of length ω. Therefore

∣
∣
∣x

(2)
2 (t)− x̂

(2)
2 st(t)

∣
∣
∣ � 2ωσ2μ2. (A.5)

We have

∣
∣
∣x

(1)
2 (t)− x

(2)
2 (t)

∣
∣
∣ � χ(t∗, t). (A.6)

Now (A.5) and (A.6) imply that

∣
∣
∣x

(1)
2 (t)− x̂

(2)
2 st(t)

∣
∣
∣ � 2ωσ2μ2 + χ(t∗, t). (A.7)

Consider a horizontal line passing through the point x(1)(t). Due to (A.7), this line contains a

point a such that
∥
∥a− x̂

(2)
st (t)

∥
∥
∞ � 2ωσ2μ2 + χ(t∗, t). Consequently, V (2)(t, a) � V (2)

(

t, x̂
(2)
st (t)

)

+

2λωσ2μ2 + λχ(t∗, t). This, together with (A.2) and (A.4), implies that V (2)(t, a) � V (2)(t∗, x∗) +
2λωσ2μ2 + λχ(t∗, t).

Since V(1, t, a) � V (2)(t, a),

V(1, t, a) � V (2)(t∗, x∗) + 2λωσ2μ2 + λχ(t∗, t). (A.8)

Due to equality V(1, t, a) = V
(

1, t, x(1)(t)
)

, from (A.8) we get (15).

Before proving Lemma 2 we turn to Lemma 3.

Lemma 3. Let (t∗, x∗) ∈ Y , δ > 0, t∗ + δ < T and 0 � ω � t∗ + δ. Suppose that any motion of
system (9) starting at the instant t∗ from point x∗ for t ∈ [t∗, t∗+ δ] does not reach the lines Π(i, t),
i = 1, 2.
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Suppose that along some motion x(1)(·) of system (8), at the instant t∗ outgoing from point x∗
due to admissible controls u(·) and v(·), for every i = 1, 2 it holds that

1) either x(1)(t) ∈ Π+(i, t) on the interval [t∗, t∗ + δ] and ui(t) = +μi on [t∗ + ω, t∗ + δ];

2) or x(1)(t) ∈ Π−(i, t) on the interval [t∗, t∗ + δ] and ui(t) = −μi on [t∗ + ω, t∗ + δ].

Then for each t ∈ [t∗, t∗ + δ] it holds that

V (2)(t, x(1)(t)
)

� V (2)(t∗, x∗) + 2λωσμ+ λχ(t∗, t). (A.9)

Proof of Lemma 3. From the possible combinations of signs +, − and values i = 1, 2 we
consider the case when along motion x(1)(·) of system (8) on the interval [t∗, t∗ + δ] it holds that
x(1)(t) ∈ Π+(i, t), i = 1, 2. Let c∗ = V (2)(t∗, x∗). Fix an arbitrary instant t ∈ [t∗, t∗ + δ].

For an open-loop control v(·) considered on the interval [t∗, t], we find an open-loop control ust(·)
so that

x
(2)
st (t) ∈ W (2)

c∗ (t), (A.10)

where x
(2)
st (·) = x

(2)
st

(

· ; t∗, x∗, ust(·), v(·)
)

is a motion of system (9) that at the instant t∗ goes
out from point x∗ under the action of controls ust(·) and v(·). Inclusion (A.10) means that

V (2)
(

t, x
(2)
st (t)

)

� V (2)(t∗, x∗).
We introduce a new control ûst(·) with components ûi st(t) = +μi, i = 1, 2. In our case, it holds

that x̂
(2)
1 st(t) � x

(2)
1 st(t) and x̂

(2)
2 st(t) � x

(2)
2 st(t). Since points x̂

(2)
st (t) and x

(2)
st (t) belong to Π+(1, t)

⋂

Π+(2, t), we have that

V (2)(t, x̂
(2)
st (t)

)

� V (2)(t, x
(2)
st (t)

)

� V (2)(t∗, x∗). (A.11)

By the conditions of Lemma 3, the ui(·) component differs from ui ≡ +μi only on an interval of

length at most ω. Therefore,
∣
∣x

(2)
i (t)− x̂

(2)
i st(t)

∣
∣ � 2ωσiμi, i = 1, 2. Thus,

∥
∥x(2)(t)− x̂

(2)
st (t)

∥
∥
∞ � 2ωσμ.

We have
∥
∥x(1)(t)− x(2)(t)

∥
∥
∞ � χ(t∗, t). Consequently,

∥
∥x(1)(t)− x̂

(2)
st (t)

∥
∥
∞ � 2ωσμ + χ(t∗, t).

Due to (A.11) this implies (A.9).

Proof of Lemma 2. Fix t ∈ (t∗, t∗). Let t� ∈ (t∗, t). We find a sufficiently fine-grained partition
of segment [t�, t] by instants {tj}, j = 1, 2, . . . , e, t1 = t�, te = t, tj+1 � tj + δ, such that for every
interval [tj, tj+1], j = 1, 2, . . . , e− 1, an arbitrary motion of system (9) that at the instants tj goes
out of point x(1)(tj) does not reach a switching line on this interval. This can be achieved since
switching lines change continuously in time, and also due to the assumption we made regarding
the location of motion x(1)(·) with respect to switching lines.

Let ρ(tj) = 0 if tj � t∗ + ω, and ρ(tj) = 1 if tj < t∗ + ω. Due to Lemma 3, for each j we have
the following relation:

V (2)(tj+1, x
(1)(tj+1)

)

� V (2)(tj , x
(1)(tj)

)

+ ρ(tj)2λδσμ + λχ(tj , tj+1). (A.12)

Applying estimate (A.12) for j = 1, 2, . . . , e− 1, we obtain the inequality

V (2)(t, x(1)(t)
)

� V (2)(t�, x(1)(t�)) + 2λ(ω + δ)σμ + λχ(t�, t).

Passing to the limit for δ → 0, and then for t� → t∗, we get estimate (16) for t ∈ (t∗, t∗). If t = t∗

we add one more passage to the limit.
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