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Abstract—A third-order nonlinear control system governing automobile or aircraft motion in a horizontal
plane is considered. A theorem on the number and character of switchings of the controls that lead to the bound-
ary of the reachability set is proved. Examples of numerical construction of the reachability set are presented.

INTRODUCTION

In the literature on mathematical control theory,
there are few examples of third-order nonlinear systems
for which the reachability sets in the three-dimensional
space of phase coordinates have been constructed. This
is explained by the fact that the reachability sets for
nonlinear systems, as a rule, are not convex, which con-
siderably complicates the analytical description and
numerical construction of these sets.

A reachability set G(7) at a fixed time T'is a set of
all states in the phase space that can be reached at the
time T from a given initial state by means of an admis-
sible control.

In this paper, results of studying the reachability set
for a third-order nonlinear controlled system are pre-
sented. In this system, two coordinates describe the
geometric position in the plane and the third coordinate
is the angle specifying the direction of the velocity vec-
tor. The magnitude of the velocity is assumed to be con-
stant. A scalar control determines the instantaneous
angular rate of rotation of the linear velocity vector, and
the absolute value of the rate is assumed to be bounded.
Such a system is often used as the simplest model of
automobile or aircraft motion in a horizontal plane [1-5].

By applying the Pontryagin maximum principle [6]
to this system, it is not difficult to show that each point
belonging to the boundary of the set G(T) can be
reached by means of a piecewise constant control with
a finite number of switchings. In this paper, a theorem
on the number and character of the control switchings
is proved. This theorem is used for constructing numer-
ically the boundary of the reachability set.

The set G(T) being examined provides a nontrivial
example of a reachability set in the three-dimensional
space for a nonlinear control system. The set G(T) con-
structed in this work can be used as a test in the devel-
opment of universal numerical algorithms for con-
structing reachability sets for nonlinear control sys-

tems. The results obtained can also be useful when
analyzing procedures for constructing prediction sets in
problems with incomplete information for systems
modeling aircraft motion in a horizontal plane [7, 8].

1. PROBLEM STATEMENT

Let the plane motion of a controlled object be gov-
ered by the following system of differential equations:

x = Vcoso,

y = Vsing,

(1.1)

¢ = %u, lul <1,

V = const>0, k = const>0.

Here, x and y are coordinates of the geometric position,
@ is the angle of the velocity vector with the abscissa
axis (Fig. 1), V is the magnitude of the velocity, and & is
the maximal lateral acceleration. Admissible controls
u(-) are measurable functions of time satisfying the
constraint |u| < 1. The angle @ runs over the values in
the interval (—oo, o),

The phase vector (x, y, @) of system (1.1) is denoted
by z. For the sake of brevity, we introduce the notation
o= k/V.

Let z, be an arbitrary fixed state of system (1.1) at an
initial instant t,. The reachability set G(7) for T= Lhis a
set of all points z of the three-dimensional phase space
that can be reached at the instant T from the initial point
Zg by means of an admissible control defined on the
interval [¢,, T1.

Since the coefficients of system (1.1) do not depend
on time, the selection of the initial instant ty does not
matter. In addition, the initial state z, can also be taken
arbitrarily: the reachability sets for different initia]
states are obtained from one another by a rotation and
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translation. It follows from the general results of math-
ematical control theory [9] that the set G(T) is closed
and bounded.

The aim of this work is to prove a statement on the
number and character of the switchings of the controls
that bring the system to the boundary of the set G(7)
and to numerically construct this boundary.

It should be noted that the projection of the set G(T)
onto the plane x, y is considered in the paper [10]. The
authors are not aware of works where a three-dimen-
sional reachability set for system (1.1) is considered.

2. PROJECTION OF THE REACHABILITY SET
ONTO THE PLANE OF GEOMETRIC
COORDINATES

Before we proceed to examining the reachability set
in the three-dimensional phase space, we show its pro-
jection onto the plane x, y. Projections of the reachabil-
ity set for T; = i0.5n/a, i = 1, 2, 3, 4, are depicted in
Fig. 2 (assuming a zero initial instant). At the selected
instants of time, the velocity vector is turned through
the angle of i0.51 (—i0.5m) if the control is u = 1 (u=-1).
Note that the scales in all figures are generally different.

Trajectories corresponding to limiting controls « = |
and « = —1 are circles of radius V/o. The initial velocity
vector is marked by an arrow. The sets depicted in the
figure are computed by means of relations given in | 10].

3. MAXIMUM PRINCIPLE

It is known [9] that the controls that bring the system
to the boundary of the reachability set satisfy the
Pontryagin maximum principle. Let us write down the
equations of the maximum principle for system (1 1)

Let u*(-) be an admissible control and (x*(-), y*(-),
¢*(-)) be the corresponding motion of system (1.1) on
the interval [f,, 1, ]. The differential equations govern-
ing the adjoint system have the form

‘i’l = O’
v, =0,
Vs = v, Vsin@*(1) — ¢, Vcos@*(2).

3.1

The maximum principle implies that there exists a non-
zero solution (y¥(-), W¥ (-), w¥ (-)) of system (3.1
that satisfies the condition

yE(H)Veos@* (1) + w3 (n)Vsing* (1)
+YF(Hoau*(r) = rlr?ax[w;“(t)Vcoscp*(t)
ul <1
+ YE()Vsin@* (1) + i (t)ou]

almost everywhere in the interval [, f,]. Hence, the
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Fig. 2. Projections of the reachability sct onto the plane x, y.
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maximum condition is as follows:

almost everywhere ¥ (t)u*(r)
(3.2)

= maxyi(Nu, € [ty ]

luj <1
Since the functions i () and W3 (+) are constant,
we will use the notation ¥ and 3 for them. If i =0
and ¥ =0, then ¥ (1) = const # 0 on the interval
[to. 1..). Hence, in this case, either u*(1) = 1 almost
everywhere or «*(f) = —1 almost everywhere.
Now. let at least one of the functions, y§ or ¥ , be

nonzero. It follows from (1.1) and (3.1) that W% (1) can
be written as

wi(n) = wiyH(n) - wix*(n) +C.

Hence, it follows that y# (1) = 0 if and only if the point
(x*(1), y*(1)) of the geometric position at any time ¢ sat-
isfies the straight line equation

yiy-yix+C = 0. (3.3)
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Fig. 3. Trajectories satisfying the maximum principle and the switching line.

Equation (3.3) was considered in many works (e.g., [3,
11]) that employed the maximum principle for studying
system (1.1).

By virtue of (3.2), if w¥ () > 0 (y¥ (1) <0), then
w*(r) = 1 (u*(t) = —1) almost everywhere in this interval.
In this case, the projection of the phase point onto the
plane x, y moves counterclockwise (clockwise) along

an arc of a circle of radius V/ouin the half-plane ¥y —

Yix+C>0(yfFy— yix+ C<0). A fragment of the
motion of duration 2m/ow with the control satisfying the
condition u*(f) = 1 or u*(r) = —1 almost everywhere in
the corresponding time interval will be referred to as a
cycle. The projection of the trajectory of a cycle onto
the plane x, y is a circle. If y#¥ (1) = 0 on a certain inter-
val of time, then the trajectory of the corresponding
motion (x*(-), y*(-)) on this interval is the straight
line (3.3). Hence, @*(t) = const, and u*(f) = 0 almost
everywhere in this interval.

Consider the possible variants of the relative posi-
tion of the trajectory of motion (x*(-), y*(-)) and the
straight line (3.3).

1. The trajectory intersects the straight line (3.3) at a
certain instant at a nonzero angle (Fig. 3a). In this case,
the trajectory can be represented as a set of circle arcs
such that the time intervals between two adjacent
instants of the intersection with the straight line (3.3)

are equal to each other. The function y¥ (-) changes
sign on the interval [1,, t..] a finite number of times.

2. The straight line (3.3) is tangent to the trajectory
at a certain instant (Fig. 3b). In this case, the trajectory
can be represented as a set of circle arcs and linear seg-
ments. The linear segments belong to the straight
line (3.3), and the circle arcs are tangent to this line.
Note that any inner complete circle segment is one or
several cycles following each other. The sign of the

function y¥ () on the interval [z, 1] either does not
change or changes a finite number of times.

3. The trajectory does not intersect the straight
line (3.3). In this case, the sign of the function y¥ (-)

JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL

does not change on the entire interval [, t.], and the
trajectory is an arc of a circle.

Thus, if the maximum condition (3.2) is satisfied,
the function ¥ (-) may change sign on the interval
[t 1] only a finite number of times. Therefore, for the

control «*(-) that generates the motion z*(-) and satis-
fies the maximum principle, we can take a piecewise
constant control taking values 0, £1 with a finite num-
ber of switchings in the interval [#, t.]. For definite-

ness, the control is assumed to be piecewise constant
from the right. The instant z,, is not included in the num-

ber of the switching instants. The discussions in this
section can be summarized as follows.

Lemma 1. Let a motion z*(-) be generated by a
piecewise constant control u*(-) that satisfies the maxi-
mum principle. Then,

(a) if the motion z*(-) does not contain fragments
with zero control or cycles, the time intervals between
two adjacent switching instants are identical;

(b) if the motion z*(-) does not contain fragments
with zero control but does contain at least one cycle, the
geometric coordinates at the switching instants coin-
cide;

(c) if the motion z*(-) contains identical points of the

geometric position at switching instants, it contains at
least one cycle;

(d) if the motion z*(-) contains a fragment with zero
control, any complete inner fragment with the control

equal to 1 or —1 is one or several cycles following each
other.

4. PROPERTIES OF MOTIONS WITH PIECEWISE
CONSTANT CONTROL

In this section, we consider piecewise constant con-
trols taking values O or 1. As shown in Section 3, these
controls are sufficient for constructing the boundary of
the reachability set. In Lemmas 2 and 3, we analyze
motions that do not contain fragments with zero con-
trol. In Lemma 4, the case where there is a fragment
with zero control is considered. In what follows, the
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symbol d denotes the boundary of a set and the symbol
int denotes its interior.

Lemma 2. Let a motion z(-) on an interval [¢,, 7] be
generated by a piecewise control u(-) taking values *1
with two switching instants 7, and f,. Suppose that the
points of the geometric position in the plane x, y at the
switching instants are different. In addition, let the ine-
quality

(t —to) + (tx— 1) > (82— 1) 4.1)

be fulfilled. Then, z(t.) € intG(ty).

Proof. Without loss of generality, we may assume
that the sequence of values of the control u(+) is as fol-
lows: -1, 1, —1. Denote by (x, y,) and (x,, y,) the points
of the geometric position corresponding to the switch-
ing instants ¢, and 7.

Assume the contrary; i.e., let z(r,) € dG(t,). Then,
the control u(-) satisfies the maximum principle. Since
the points (x, y;) and (x,, y,) do not coincide, it follows
from assertion (a) of Lemma 1 that the motion z(-) does
not contain cycles on the interval [f), 7.].

Let us select instants 7 € (f, t;) and 7 € (t,, 1) that
satisfy the equation
('tl = ;) +(?““‘“'2) = (fz“tl),

which is always possible on the strength of inequality
(4.1).

Introduce the notation 7, = f +f —fand 7, =1 —

4.2)

t, + 1 . Let us consider an auxiliary motion 26y =20

(),  (-)) defined on the interval £, #] with the initial

condition z(fo) that is generated by the control

1.

1 , l€ [E’ ;l )

u(r) = T -1, telh,b)
1, te [i?)

te [ty t)

-1, 1€ [7, 1]

The trajectories of the original and auxiliary
motions are schematically shown in Fig. 4.

On the half-interval [7, 7), the control u(-) has three
intervals of constancy, [7, t,), [f;, 2), and [, 1), where
it takes values —1, 1, and -1, respectively. The auxiliary
control i (-) on the half-interval [7, 7) also has three
intervals of constancy, [7, 1), [f1+ 7,), and [f2, 1),
with the values 1, —1, and 1.

It is evident that

tl—t = ?-—;2, tZ—tl =;2—;i, ?"[2 = tl'—}.
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Fig. 4. Explanation of the proof of Lemma 2.

Note that, on the corresponding pairs of intervals, the
controls of the original and auxiliary motions are oppo-
site in sign. Hence, it follows that

u(t) = —u(1+1-1),
i n (4.3)
te (1,11)u(r1,f3)u(t2,r).
Thus, the equality u(t) = —u(f + 1 — 1) is satisfied
everywhere in the interval (7, 1) except for the instants
I and fh.

Using the third equation in system (1.1), the defini-
tion of the instants 7, and 1, , and Eq. (4.2), we obtain

H(1) = (1) + (- 1) — oty = 1) + 0~ 12)
= 1)+ a2t — 1 -2+ 1) = (7).

Hence, taking into account the equality @(f) = @( 1),
we obtain

o(1) = o(1). (4.4)

Using (4.3),(4.4), and the third equation in (1 1), we
obtain

o) = cp(i)+jau(r)d1 = q)(i)-jaa(i_i—ndr.

Changing the integration variable, s = P +1—1T, we
obtain

T+i-1t

j ai(s)ds = @t +1-1).

1

o) = o) +

Hence,

o(r) = @(i+1—1t), 1€ [7,7]. (4.5)
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Fig. 5. Explanation of the proof of Lemma 3.

Further,

x(t) = x(1) +‘J-Vcos¢(s)ds

t

= i(i)-chosé(; +1-T)dr.

Using (4.5) and taking into account that x(1) =x(1),
we obtain

(i) = x(i)+_[vCos(p(r)dr = x(3).

¢
The equality y(7) = y(7) is proved similarly.

Thus, we have proved that z(7) = z(7); i.e., at the
instant 7, the auxiliary motion Z (-) has the same phase
coordinates as the original motion z(-). Hence, 2l =
z(t4), and, thus, z (1,,) € G(t,,). Then, it follows that the

control u (-) satisfies the maximum principle..

The motion z () has no cycles on the interval [, 1],

which follows from the definition of the control u(-)
and from the fact that the motion z(-) has no cycles.
Then, it follows from assertion (a) of Lemma 1 that the
time intervals between the adjacent switching instants

for the control u (-) must be identical. However, this is
not true. Indeed, consider three adjacent switching

o

instants 7, , ,, and . Using (4.2), we find that 1, — ¢, >
t; — 1. Then,

.;2“;| = 1_2"—['|>fl“"} = ;“;7_

and we arrive at the contradiction. Hence, z(t,) €
intG(ty).

Lemma 3. Let a motion z(-) on an interval [z, t..] be
generated by a piecewise constant control u(-) taking
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the values *1 with three switching instants. Then,
2ty) € intG(t..).

Proof. Let (x;, y,), (x,, y,), and (x5, y;) be the geo-
metric position points at the switching instants f,, &,
and t;, respectively.

(1) Let us assume first that the points (x,, y,), (x5, ¥2),
and (x;, y3) are all different. Of two inner intervals
[1), £,] and [£,, £;], we take the lesser one (or either one
if they have equal lengths).

Suppose that the interval [, 1;] has been selected.
Then, on the interval [z, t..], the motion z(-) satisfies the

assumptions of Lemma 2, and, hence, z(t,) € intG(z).

If the interval [¢;, 1,] has been selected, then the
assumptions of Lemma 2 are fulfilled for the motion z(-)
on the interval [#, #;]. In this case, z(t;) € intG(ts), and,
hence, z(1..) € intG(z,,).

(i1) Now, let there be coinciding points among (x,
y1)s (X2, ¥2), and (x3, y3). Assume the contrary; i.e., let
z(ty) € 9G(ty). Then, the control u(-) satisfies the max-

imum principle.

By virtue of assertion (c) of Lemma 1, the motion
z() contains at least one cycle. Then, it follows from
assertion (b) of Lemma 1 that the points (x;, y,), (X, ¥5),
and (x3, y;) coincide. This means that the motion on the
interval [#,, ;] comprises one or several cycles follow-
ing each other in one direction and the motion on the
interval [#,, £;] comprises one or several cycles follow-
ing each other in the opposite direction (Fig. 5).

Consider an auxiliary motion Z (-) (Fig. 5) obtained
through a small variation of the switching instants ¢,
and 7,. Let r; + eand 1, + €, where 0 < € < 21/a, be the
new switching instants.

The motions z () and z(-) coincide on the interval
[+ & 1] Hence, Z(1,) = z(t,). Therefore, Z(t,) €
dG(t,.). Hence, the maximum principle holds. However,

the motion z () contains cycles, although the geometric
position points at the switching instants do not coin-

cide. This contradicts assertion (b) of Lemma 1. Hence,
) € IntG(zy,).

Lemma 4. Let a motion z(+) on the interval [f,, t.] be

generated by a piecewise constant control u(-) taking
values 0, £1 with two switchings. Suppose that the con-
trol is equal to zero on only one interval and this inter-
val is either of the two extreme intervals of control con-
stancy. Then, z(z,) € int G(z,).

_ Proof. Let, for definiteness, the control u(-) succes-
sively take values 0, 1, and —1. Denote by (x1, y,) and

(x5, y;) the points of the geometric position at the
switching instants 7, and t,.

No. 3 2003
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Assume the contrary. Let z(t,) € dG(t). Then, the
control u(-) satisfies the maximum principle.

By virtue of assertion (d) of Lemma [, the motion
z(-) on the interval [#;, 1,] comprises one or several
cycles following each other (Fig. 6). Hence, (x;, y)) =
(X2, ¥2)-

Consider an auxiliary motion z (-) (Fig. 6) with the
initial condition z(t,) generated by the control
(0, t€ [ty 1))

-1,
1, te|t,+&t,+€)

-1,

te [t,t, +€)

u(t) =

te [t +¢€ 1],

where € is a small number, 0 < € <ty — 1,, and € <21/«

The motions z(-) and z(-) coincide on the interval
[t,+ €, t,]. Hence, Z(1;) = 2(ty). Therefore, z(t,) €

dG(t,). Hence, the control u (-) satisfies the maximum

principle. However, the motion z(+) does not contain
cycles on the interval [, t; + €], which contradicts
assertion (d) of Lemma 1.

Hence, z(1,.) € intG(ty).

5. CONTROLS LEADING TO THE BOUNDARY
OF THE REACHABILITY SET

Now, we formulate the basic result of the paper.

Theorem. Any boundary point of the reachability
set for system (1.1) can be reached by means of a piece-
wise constant control with no greater than two switch-
ings. In the case of two switchings, it is sufficient to
consider six sequences of the control values, namely,

1)1,0,1; 2)-1,0,1; 3)1,0,-1;
4)-1,0,-1; 5 1,-1,1; 6)-1,1,-1.

Proof. Assume the contrary. Let there exist a point
¢ belonging to the boundary of the reachability set
G(T) such that any control that brings the system to this
point has three or more switchings. If there are several
controls bringing the system to this point, we consider
the control with the least number of switchings. Denote
this control and the corresponding motion by u*(-) and
7*(-), respectively.

Consider the motion z*(-) on the last four intervals
of the control constancy. Among these intervals, there
may be no greater than two intervals with zero control.
The following four variants are possible.

(1) There are no intervals with zero control. Then,
by virtue of Lemma 3, we have z*%(T) e intG(T). This

contradicts the fact that z%(T) = 2 € dG(T).

(2) There is one interval with zero control. In this
case, we can separate three intervals following each

5.1
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Fig. 6. Explanation of the proof of Lemma 4.
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Fig. 7. Explanation of the proof of the theorem.

other such that the interval with zero control is either
the first or last in this triple. It follows from Lemma 4
that z*(T) € intG(T), which contradicts the relation

7%(T) = 2 € IG(T).

(3) The control is zero on two extreme intervals. In
this case, similar to case (2) above, using Lemma 4, we
find that z*(T) € intG(T) and, thus, arrive at the contra-
diction.

(4) There are two intervals with zero control, and
they are separated by one interval with nonzero control.
The control u*(-) satisfies the maximum principle.
Hence, on the strength of assertion (d) of Lemma 1, the
interval with nonzero control that separates the inter-
vals with zero control represents one or several cycles
following each other (Fig. 7).

We move all cycles from that interval to the initial
point of the first linear segment or to the terminal point
of the second linear segment. Linking the time coordi-
nates of the linear segments, we obtain an auxiliary
motion Z (-) that, like the original motion z*(-), brings
the system to the point under consideration at the
instant T (Fig. 7). However, the number of control
switchings in the auxiliary motion is less than that in
the original motion by one, which contradicts the
assumption that the selected control u*(-) has the least
number of switchings.

Thus, any point on the boundary of the reac.hability
set G(T) can be reached by means of a piecewise con-
stant control with no greater than two switchings.

No.3 2003
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1,01

3)

4)

6)-1,1,-1

.
¢ SH1L-1,1

Fig. 8. Structure of the boundary of the reachability set for
T = nfo.

Now, consider the question of possible control
sequences. In addition to the six control sequences indi-
cated in the assertion of the theorem, the following six

variants are also theoretically possible:
o, 1,-1; 80,-1,1; 9)1,-1,0;
10)-1,1,0; 11)0,1,0; 12)0,-1,0.

Controls 7 through 10 cannot lead to the boundary
of the reachability set on the strength of Lemma 4.

As for the controls 11 and 12, for any motion corre-
sponding to them, the number of switchings can be
reduced by one similar to case (4) above. Then, we
obtain controls with one switching that lead to the same
boundary point. The theorem is proved.

Remark. Note that the above theorem does not
completely describe controls that lead to the boundary
of the reachability set. Additional easy-to-check condi-
tions are needed that, being applied to the motions cor-
responding to controls 1-6, would make it possible to
eliminate the motions that lead to the interior of the
reachability set and keep those that lead to its boundary.

6. NUMERICAL CONSTRUCTION
OF THE THREE-DIMENSIONAL REACHABILITY
SET

We will apply the theorem from Section 5 to con-
structing numerically the boundary of the reachability
set for system (1.1). The switching instants are consid-
ered as parameters.

Fig. 9. Evolution of the reachability set.
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Fig. 10. Violation of the simple connectivity of the reachability set.

We set 1, =0 and z, = 0.

To construct the boundary of the reachability set
G(T), we sort out all controls with two switchings of
form 1-6 from list (5.1). For each control sequence, the
parameters 1, and 1, are selected from the intervals
[0, T] and [1,, T}, respectively. Thus, controls without
switchings or with one switching are not excluded from
consideration. For a particular control sequence, by
allowing the parameters ¢, and 1, to take values on a suf-
ficiently fine mesh, we obtain a surface in the three-
dimensional space of the coordinates x, y, and @.

Thus, each of the six control sequences in list (5.1)
is made to correspond to a surface in the three-dimen-
sional space. The boundary of the reachability set G(T)
is composed of fragments of these surfaces. The SIX sur-
faces are loaded in a visualization program without any
additional processing. By means of this program, we
can distinguish the boundary of the reachability set.
Some surfaces occur, partially or completely, inside the
reachability set. When displaying the boundary, these
fragments are not seen.

Figure 8 shows the boundary of the reachability set
G(T) at T = n/o. from two viewpoints. Different frag-
ments of the boundary are depicted by different grada-
tions of gray color. The mesh lines show sections of the
reachability set by planes @ = const. The control identi-
cally equal to zero leads to the point where the frag-
ments 1—4 are joined. Controls with one switching lead
to the lines separating the fragments 1,2;1,3;2,4;2, 5;
2,6;3,4;3,5;and 3, 6. Any point of the line separating
the fragments 5 and 6 can be reached by means of two
motions, each with two switchings. The surface along
this line is not smooth, but the difference in angles of
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two surfaces at the joining line is small and cannot be
seen in the figure.

The reachability sets G(T) for four instants are
shown in Fig. 9 from one viewpoint. One can clearly
observe how the structure of the reachability set bound-
ary changes with time: the rear part of the boundary
composed of the fragments 5 and 6 is “covered” by the
front fragments [—4.

In the time interval between T = 3n/ac and T = 4m/a,
there is a instant T = 3.63m/c. starting from which the
reachability set is not simply connected during a small
interval of time; namely, there appears a cavity that
does not belong to the reachability set. Figure 10 shows
the genesis of this situation. The figure depicts the sec-
tions of two reachability sets G(T) corresponding to the
instants T = 3n/c and T = 3.631/c by the plane @ = 0.
The set G(31/a) is simply connected, whereas the set
G(3.63m/ct) is not simply connected.

Thus. when T is not too large, the boundary of the
three-dimensional reachability set G(T) has a rather
simple structure. As T grows, the structure of the
boundary becomes more complicated. There exists a
small time interval during which the set G(T) is not sim-
ply connected.
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