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SWITCHING SURFACES IN LINEAR DIFFERENTIAL GAMES

V. S. Patsko UDC 517.978.2

Abstract. In this paper, we consider linear (in dynamics) conflict control problems (linear antagonistic
differential games) with a fixed instant of termination and a continuous terminal cost function. We formulate
and prove assertions on sufficient conditions under which such a method guarantees the obtaining of a result
close to optimal by the minimizing player and has the stability property. In the concluding part of the
paper, we give a brief description of publications devoted to computer modeling by using the proposed
control method.
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Introduction

In engineering practice, control problems of motion in which components ui, i = 1, k, of the vector
control action are subjected to independent constraints |ui| ≤ μi are typical. For such problems, in
finding a control optimizing a given performance index, methods based on the construction of switching
surfaces in the state space are natural. Each such surface corresponds to its own component ui of the
control action, and at a current instant of time t, it divides the state space into two parts: to one side of
the switching surface the component ui(t) assumes the value −μi, and to the other side it assumes the
value +μi. In this case, problems of stability of the control method with respect to small errors in the
construction of switching surfaces is important.

In this paper, we consider linear (in dynamics) conflict control problems (linear antagonistic differential
games) with a fixed instant of termination and a continuous terminal cost function. The vector control
action of the minimizing player is subjected to independent componentwise constraints |ui| ≤ μi. We
describe a method for constructing a feedback control using switching surfaces. We formulate and prove
assertions on sufficient conditions under which such a method guarantees the obtaining of a result close
to optimal by the minimizing player and has the stability property.

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications),
Vol. 23, Optimal Control, 2005.
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In the concluding part of the paper, we give a brief description of publications devoted to computer
modeling by using the proposed control method.
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Main Notation

(1) superscript showing that the set considered (matrix, function, etc.) refers to the initial dif-
ferential game;

(2) superscript showing that the set considered (matrix, function, etc.) refers to the approximat-
ing differential game;

u vector control action of the first player;
P constraint on the control action of the first player;
k number of scalar components of the control action of the first player;

μi module of constraints on the scalar component with number i of the control of the first player;

μ =
k∑

i=1
μi;

v′ vector control action of the second player;
Q constraint on the control action of the second player;
ϑ fixed instant of finishing the game;
γ terminal cost function;
λ Lipschitz constant of the cost function in the approximating game;
T interval of the game;
Z = T × R

n, game space;
U strategy of the first player;
Δ step of the discrete control scheme of the first player;
K set of admissible program controls of the second player;
Γ guarantee of the first player in the differential game;
Γ value function of the differential game;

V (2) u-stable function in the approximating game;
W

(2)
c level set of the function V (2);

Var(V (2), [t∗, t∗]) increment of the function V (2) on the closed interval [t∗, t∗];
B(3) auxiliary matrix function defined on the interval T ;

B
(3)
i (t) column with number i of the matrix B(3)(t);

βi Lipschitz constant of the function t �→ B
(3)
i (t);

β maximum among the numbers βi, i = 1, k;
σi maximum of the module |B(3)

i (t)| on the interval T ;
σ maximum among the numbers σi, i = 1, k;

χ(t∗, t∗) integral characteristic of the difference between the dynamics of the initial and approximating
games;

Π(i, t) switching “surface” corresponding to instant t of the ith component of the control action;
Π−(i, t) the part of the space R

n lying to the negative side with respect to the “surface” Π(i, t);
Π+(i, t) the part of the space R

n lying to the positive side with respect to the “surface” Π(i, t);
U multivalued strategy of the first player defined on the basis of the sets Π(i, t);

Πr(i, t) geometric r-neighborhood of the “surface” Π(i, t);
Ur multivalued strategy of the first player defined on the basis of the sets Πr(i, t);

Πc(i, t) c-neighborhood of the “surface” Π(i, t);
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G reachable set of the control system;
int interior of a set;
Ch

k binomial coefficient with k and h;
G(B) subspaces spanned by the set B of finitely many vectors from R

n;
q(F ) the number of elements of a finite set F .

1. Statement of the Problem and Formulation of the Main Results

1.1. Preparatory description of the problem. Let the linear differential game with a fixed termi-
nation time ϑ be described by the relations

ẏ(t) = B(1)(t)u(t) + C(1)(t)v(t),

y(t) ∈ R
n, u(t) ∈ P (1), v(t) ∈ Q(1); γ(1)(y(ϑ)).

(1.1)

Here, y(t) is the state vector, u(t) is the control action of the first player, v(t) is that of the second, and
the matrix functions B(1) and C(1) are piecewise continuous. It is assumed that the set P (1) bounding
the control action of the first player is a “rectangular parallelepiped” in the space R

k, i.e.,

P (1) :=
{
u ∈ R

k : |ui| ≤ μi, i = 1, k
}
.

In addition,

μ :=
k∑

i=1

μi > 0.

The set Q(1) bounding the control action of the second player is assumed to be a convex compact set in a
finite-dimensional space. Let γ(1) : R

n �→ R be a continuous cost function. The first player minimizes the
values γ(1)(y(ϑ)) of the cost function, whereas the interests of the second player are the opposite.

Game (1.1) is said to be initial. The notation referring to it is equipped with the superscript (1).
Let us agree that initial instants t0 for game (1.1) belong to a closed interval T = [ϑ1, ϑ], where ϑ1 < ϑ.

Let
Z := T × R

n

be the game space.
An admissible open-loop control u(·) (v(·)) of the first (second) player is a measurable function of time,

t �→ u(t) (t �→ v(t)), such that for any t, it satisfies the constraint u(t) ∈ P (1) (v(t) ∈ Q(1)). Let K(1) be
the set of all admissible open-loop controls v(·) of the second player.

Following [29], as admissible strategies of the first player, we consider arbitrary functions U : (t, x) �→
U(t, x) defined on the set Z with values in P (1). We denote by y(1)(·; t0, x0, U, Δ, v(·)) the step-by-step
motion of system (1.1) from the position (t0, x0) when the first player applies a strategy U in the discrete
control scheme [29] with step Δ > 0 and a control v(·) is realized for the second player. We set

Γ(1)(t0, x0, U, Δ) := sup
v(·)∈K(1)

γ(1)(y(1)(ϑ; t0, x0, U, Δ, v(·))). (1.2)

The quantity Γ(1)(t0, x0, U, Δ) is a guarantee that the strategy U ensures to the first player for the initial
position (t0, x0) in the discrete control scheme with step Δ. The best guarantee of the first player for the
initial position (t0, x0) is defined by the formula

Γ(1)(t0, x0) := min
U

lim
Δ→0

Γ(1)(t0, x0, U, Δ), (1.3)

where lim means the upper limit. In [29], it is shown that minimum in U is attained. Note that, according
to formulas (1.2) and (1.3), the dependence of the optimal strategy of the first player on the initial position
(t0, x0) is not excluded.
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It is known [29, 30] that the best guaranteed result Γ(1)(t0, x0) coincides with the symmetrically defined
best guaranteed result of the second player. Therefore, Γ(1)(t0, x0) is also called the value of the value
function at the point (t0, x0).

In this paper, we will show that, under certain additional assumptions in game (1.1), there exists a
universal optimal strategy U∗ of the first player stable with respect to the error of its numerical assignment.

The universality means that the strategy U∗ is optimal for all initial positions (t0, x0) ∈ Z. It should
be stressed that we are speaking about the universality in the “rigid” sense: the strategies considered are
functions of only t, x. In the class of strategies additionally depending on a certain “accuracy parameter,”
the existence of optimal universal strategies was proved in [28] for a wide class of problems.

In this paper, we define the universal optimal strategy (t, x) �→ U∗(t, x) using “switching surfaces.” At
each instant of time t, with each component ui, i = 1, k, of the control action u, we associate its own
switching surface. To one side of the switching surface the control ui assumes the value −μi, and to the
other side it assumes the value +μi. On the switching surface itself, the value of the control ui can be
arbitrarily chosen from the closed interval [−μi, μi].

The problem on the existence of optimal universal strategies in differential games was briefly discussed
in [29, p. 48], and it became topical after [42], in which the example of a game problem in which there is
no universal strategy was presented. In [9, 10], it is shown that for linear differential games of the form
(1.1), but in the case where the set P (1) is a segment (i.e., the control action u is scalar), there exists a
stable universal strategy of the first (minimizing) player, and it can be given by using switching surfaces
varying in time. In [46, 47, 49, 50], it was proved that if the set Q(1) is a segment (i.e., the control action
v is, in fact, scalar), then there exists a universal optimal strategy of the second (maximizing) player, and
it also can be given by the switching surfaces. However, such a strategy has no stability property. The
influence of the loss of stability was demonstrated by using computer modeling in [49].

The constructions proposed in the paper generalize those described in [9, 10]. Another approach for
proving the existence of the universal strategy in the case of a convex cost function was sketched in [2].

The use of switching surfaces for constructing a feedback control is very natural from the engineering
point of view (for applications to game problems, see, e.g., [24]). The goal of the paper is to reveal the
conditions under which, in the class of differential games considered, we obtain an optimal and stable
control method.

As in [9, 10], we accept the following scheme of arguments. Orienting ourselves toward computer
constructions, we replace the initial differential game by a convenient approximating game for which
it is possible to construct a certain u-stable [29, 30] function or even the value function of the game.
Processing such a function, we obtain switching surfaces. We apply the found switching surfaces in the
initial differential game for defining the universal strategy of the first player. We estimate the guarantee
of the first player that he ensures by applying the constructed universal strategy. As a consequence of
such an estimate, we obtain the result concerning the existence of the universal optimal stable strategy
in game (1.1).

This paper was published earlier as a preprint [37]. The result concerning the case of a scalar control
of the first player was described in [36].

We make a comment on the writing of the dynamics of the linear differential game in the form (1.1).
The specific character of this notation is that the state variables do not enter the right-hand side. Let the
linear differential game with a fixed time of termination ϑ have the form

ẏ(t) = A(t)y(t) + B(t)u(t) + C(t)v(t),

y(t) ∈ R
m, u(t) ∈ P (1), v(t) ∈ Q(1); γ(y(ϑ)).

Assume that the cost function γ is determined only by values of certain n coordinates, n ≤ m, of the
state vector at the termination instant. Then the passage to (1.1) is performed [29, p. 160], [27, p. 354]
by using the standard transformation

y(t) = Xn,m(ϑ, t)y(t),
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where Xn,m(ϑ, t) is the (n×m)-matrix composed of the corresponding n rows of the fundamental Cauchy
matrix for the system ẏ(t) = A(t)y(t). In this case,

B(1)(t) = Xn,m(ϑ, t)B(t), C(1)(t) = Xn,m(ϑ, t)C(t), γ(1)(y(ϑ)) = γ(y(ϑ)).

1.2. Approximating game. Along with game (1.1), we consider one more game

ẏ(t) = B(2)(t)u(t) + C(2)(t)v(t),

y(t) ∈ R
n, u(t) ∈ P (2) = P (1), v(t) ∈ Q(2); γ(2)(y(ϑ))

(1.4)

with a fixed time of termination ϑ. We will interpret game (1.4) as an approximation of game (1.1) that
is convenient for calculations. Here, y(t) is the state vector and the functions B(2) and C(2) are piecewise-
continuous. The set P (2) = P (1) bounding the control action of the first player is the same as in game
(1.1), and the set Q(2) is a compact set in a finite-dimensional space. The cost function γ(2) : R

n �→ R is
assumed to be Lipschitz with constant λ and satisfies the condition γ(2)(x) → ∞ as |x| → ∞. The first
player minimizes the values of γ(2)(y(ϑ)), and the second player maximizes them.

The belonging of one quantity or another to the approximating game is indicated by the superscript
(2). Admissible controls u(·) and v(·) of the first and second players are defined similarly as for those for
game (1.1). Denote by K(2) the set of all open-loop controls v(·) of the second player.

We assume that in the framework of the approximating game (1.4), a certain continuous u-stable
function V (2) : Z �→ R satisfying the boundary condition

V (2)(ϑ, x) = γ(2)(x), x ∈ R
n,

is constructed. According to [29, 30], a function V (2) is said to be u-stable if for any position (t∗, x∗) ∈ Z,
for any t∗ ∈ (t∗, ϑ], and for any v(·) ∈ K(2), there exists an admissible open-loop control u(·) of the
first player such that for the motion y(2)(t) = y(2)(t; t∗, x∗, u(·), v(·)), the inequality V (2)(t∗, y(2)(t∗)) ≤
V (2)(t∗, x∗) holds.

Assume that the function V (2) is Lipschitz-continuous with constant λ. If V (2) is the value function
of game (1.4), then the Lipschitz property follows [41, pp. 110–111] from the condition imposed on the
function γ(2).

Let B(3) be a matrix function on T each of whose columns B
(3)
i , i = 1, k, satisfies the Lipshitz condition

with constant βi. Substantively, the function B(3) can be treated as a Lipschitz approximation of the
functions B(1) and B(2). Denote

β := max
i=1,k

βi; σi := max
t∈T

|B(3)
i (t)|, i = 1, k; σ := max

i=1,k
σi.

Assume that β ≥ 0 and σ > 0.

1.3. Condition 1. Let us formulate the requirement on the function V (2), which then allows us to
introduce switching surfaces.

Condition 1. For any i = 1, k and any t ∈ T such that B
(3)
i (t) 	= 0, the restriction of the function

V (2)(t, ·) to any line in R
n parallel to the vector B

(3)
i (t) is a function whose set of minimum points is

a segment (possibly consisting of a single point) and which is strictly monotone to both sides of this
segment.

In particular, Condition 1 holds if for any t ∈ T , the function V (2)(t, ·) is convex. In the case where V (2)

is the value function of the approximating game (1.4), to ensure the convexity of the function V (2)(t, ·),
t ∈ T , it suffices to require the convexity of the cost function γ(2).
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1.4. Switching surfaces. Multivalued function U0. Introduce the following notation. For any
i = 1, k and (t, x) ∈ Z, we set

A(i, t, x) := {z ∈ R
n : z = x + αB

(3)
i (t), α ∈ R}, (1.5)

V(i, t, x) := min
z∈A(i,t,x)

V (2)(t, z). (1.6)

If B
(3)
i (t) 	= 0, then the set A(i, t, x) is the line in the space R

n passing through the point x parallel to
the vector B

(3)
i (t). In this case, V(i, t, x) is the minimum value of the function V (2) on the line A(i, t, x).

The minimum is attained because of the continuity of the function V (2)(t, ·) and the fact that it tends to
∞ as |x| → ∞. By Condition 1, the set of minimum points is a segment, which can consist of a single
point. If B

(3)
i (t) = 0, then the set A(i, t, x) is degenerate and coincides with the point x. In this case, the

value of V(i, t, x) coincides with V (2)(t, x).
Further, for all i = 1, k and t ∈ T , let

Π(i, t) := {x ∈ R
n : V (2)(t, x) = V(i, t, x)},

Π−(i, t) := {x ∈ R
n : x + αB

(3)
i (t) /∈ Π(i, t), ∀α ≥ 0},

Π+(i, t) := {x ∈ R
n : x + αB

(3)
i (t) /∈ Π(i, t), ∀α ≤ 0}.

(1.7)

Therefore, the sets Π−(i, t), Π(i, t), and Π+(i, t) are defined on the basis of the function V (2)(t, ·)
and the vector B

(3)
i (t). The sets Π−(i, t) and Π+(i, t) in the space R

n lie on different sides of the set
Π(i, t). It follows from Condition 1 that for any (t, x) ∈ Z, the function V (2)(t, ·) monotonically increases
(monotonically decreases) in the direction of the vector B

(3)
i (t) on the intersection of the line A(i, t, x)

with the set Π−(i, t) (Π+(i, t)).
For each i = 1, k, on Z, we define the scalar multivalued function

U0
i (t, x) :=

⎧
⎪⎨

⎪⎩

{−μi}, x ∈ Π−(i, t),
{μi}, x ∈ Π+(i, t),
[−μi, μi], x ∈ Π(i, t).

The function U0
i (t, ·) assumes the extreme values from the segment [−μi, μi] in the sets Π−(i, t) and

Π+(i, t) and “switches” from one extreme value to another in the set Π(i, t). Although the set Π(i, t) is
not a surface in the space R

n in the conventional sense, for clarity it will be called the switching surface
for the ith component at the instant of time t.

On Z, we introduce the multivalued function

U0(t, x) :=

⎛

⎜
⎜
⎜
⎝

U0
1(t, x)

U0
2(t, x)

...
U0

k(t, x)

⎞

⎟
⎟
⎟
⎠

.

1.5. Sets Πr(i, t). Multivalued function Ur. Let us continue the introduction of notation for the
formulation of the main result of the paper.

Let r ≥ 0. In the case B
(3)
i (t) 	= 0, we set

Πr(i, t) :=

{

x ∈ R
n : x = z + α

B
(3)
i (t)

|B(3)
i (t)|

, z ∈ Π(i, t), |α| ≤ r

}

.

The set Πr(i, t) is a geometric r-expansion of the set Π(i, t). The expansion is performed by using the
vector B

(3)
i (t). The set Πr(i, t) will also be called the r-neighborhood of the surface Π(i, t). If B

(3)
i (t) = 0,

we take Πr(i, t) = Π(i, t) = R
n.
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Introduce the sets

Πr
−(i, t) :=

{
x ∈ R

n : x + αB
(3)
i (t) /∈ Πr(i, t), ∀α ≥ 0

}
,

Πr
+(i, t) :=

{
x ∈ R

n : x + αB
(3)
i (t) /∈ Πr(i, t), ∀α ≤ 0

}
.

The set Πr−(i, t) (Πr
+(i, t)) is the part of the space R

n located (with respect to Πr(i, t)) to the (opposite)
direction of the vector B

(3)
i (t). Obviously,

Πr
−(i, t) ⊂ Π−(i, t), Πr

+(i, t) ⊂ Π+(i, t).

For r = 0, we have Πr(i, t) = Π(i, t), Πr−(i, t) = Π−(i, t), and Πr
+(i, t) = Π+(i, t).

For each i = 1, k, on Z, we introduce the scalar multivalued function

Ur
i (t, x) :=

⎧
⎪⎨

⎪⎩

{−μi}, x ∈ Πr−(i, t),
{μi}, x ∈ Πr

+(i, t),
[−μi, μi], x ∈ Πr(i, t).

Further, on Z we define the vector multivalued function

Ur(t, x) :=

⎛

⎜
⎜
⎜
⎝

Ur
1(t, x)

Ur
2(t, x)

...
Ur

k(t, x)

⎞

⎟
⎟
⎟
⎠

.

1.6. Condition 2. Let us formulate one more additional condition.
Let I be the set of subscripts 1, k, and let F be an arbitrary subset of I. For any (t, x) ∈ Z, we set

A(F, t, x) :=

{

z ∈ R
n : z = x +

∑

i∈F

αiB
(3)
i (t), αi ∈ R

}

,

V(F, t, x) := min
z∈A(F,t,x)

V (2)(t, z).
(1.8)

The set A(F, t, x) is a plane in the space R
n passing through the point x. The plane is generated by the

set of vectors B
(3)
i (t), i ∈ F , and its dimension is equal to the number of linearly independent vectors of

this set. In formula (1.8), the minimum is attained by the properties of the function V (2)(t, ·). Moreover,
the set of minimum points is a compact set.

For all F ⊂ I and t ∈ T , let

Π(F, t) :=
{
x ∈ R

n : V (2)(t, x) = V(F, t, x)
}
.

It is easy to see that if F1 ⊂ F2, then Π(F2, t) ⊂ Π(F1, t). In particular, for any i ∈ F , we have

Π(F, t) ⊂ Π(i, t).

Hence
Π(F, t) ⊂

⋂

i∈F

Π(i, t).

The additional assumption on the problem consists of the requirement that the inverse inclusion hold.

Condition 2. For any t ∈ T and any subset F ⊂ I, the following inclusion holds:
⋂

i∈F

Π(i, t) ⊂ Π(F, t).
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Condition 2 holds in the case where the set P (1) is a segment, i.e., in the case of a scalar control of the
first player. In the non-scalar case, Condition 2 means that any point common for “individual” surfaces
Π(i, t), i ∈ F, lies in the set Π(F, t).

We will also use the notation A(F, t, x), V(F, t, x), and Π(F, t) for the case F = ∅. Let us agree that

A(∅, t, x) := x, V(∅, t, x) := V (2)(t, x), Π(∅, t) := R
n.

A substantive explanation of this can be the following. Let us add the component uk1 to the components
ui, i = 1, k, of the control action, but in this case we set

B
(1)
k+1(t) = B

(2)
k+1(t) = B

(3)
k+1(t) ≡ 0.

Then for F consisting of one subscript k + 1, we have

A(F, t, x) = x, V(F, t, x) = V (2)(t, x), Π(F, t) = R
n.

Such F in the imaginary expanded set of components of the control action is equivalent to the empty set
in dealing with the initial set of subscripts of components of the control action.

1.7. Formulation of the main results. For any instants t∗ and t∗ from the interval T , we set

χ(t∗, t∗) :=
k∑

i=1

μi

t∗∫

t∗

(∣
∣B

(1)
i (t) − B

(3)
i (t)

∣
∣+

∣
∣B

(2)
i (t) − B

(3)
i (t)

∣
∣
)
dt

+

t∗∫

t∗

max
�∈R

n

|�|≤1

[

max
q∈Q(1)

	′C(1)(t)q − max
q∈Q(2)

	′C(2)(t)q
]

dt.

(1.9)

The quantity χ(t∗, t∗) characterizes (in the integral sense) the difference between the functions B
(1)
i , B

(2)
i ,

and B
(3)
i for each i = 1, k and also between the functions C(1) and C(2) and the sets Q(1) and Q(2). The

prime means the transposition.
It is assumed that the initial positions of system (1.1) belong to a certain compact set Y in the game

space Z; by the symbol M, we denote a compact set in R
n that estimates from above the set of possible

states of system (1.1) at the instant ϑ. Let us agree that

‖γ(1) − γ(2)‖M := max
x∈M

|γ(1)(x) − γ(2)(x)|.

In the paper, we will prove the following assertion.

Theorem 1. Let the conditions imposed on systems (1.1) and (1.4) and also on the functions V (2) and
B(3), including Conditions 1 and 2, hold. Then for any ε > 0, there exist positive numbers r(ε) and Δ(ε)
such that for any strategy U of the first player that is a single-valued selection of the multivalued function
Ur(ε), for any initial position (t0, x0) ∈ Y, and for any step Δ ≤ Δ(ε) of the discrete control scheme, the
following estimate holds:

Γ(1)(t0, x0, U, Δ) ≤ V (2)(t0, x0) + ε + λχ(t0, ϑ) + ‖γ(1) − γ(2)‖M. (1.10)

Let us give some elucidation of the theorem. Performing the constructions in the framework of the
approximating game, we know the value V (2)(t0, x0) of the function V (2) at the initial position (t0, x0).
Therefore, on the right-hand side of estimate (1.10), we have V (2)(t0, x0). The distinction between the
dynamics of the initial and approximation games and also the distinction of the function B(3) from the
functions B(1) and B(2) are taken into account by the quantity χ(t0, ϑ). The summand ‖γ(1) − γ(2)‖M
characterizes the difference between the cost functions. The switching sets Πr(ε)(i, t), i = 1, k, t ∈ T , for
the multivalued function Ur(ε) are defined through constructions realized by using the functions V (2) and
B(3).
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On the whole, the right-hand side of (1.10) estimates the guarantee of the first player in game (1.1)
when it uses (with step Δ) an arbitrary single-valued strategy U that is a selection of the multivalued
function Ur(ε).

Since for any i = 1, k and t ∈ T , the inclusion Π(i, t) ⊂ Πr(ε)(i, t) holds, it follows that outside the set
Πr(ε)(i, t), the strategy U coincides with the function U0 defined by using the surfaces Π(i, t). Let U0 be
a certain single-valued selection of the multivalued function U0. We obtain from what was said above
that the action of the strategy U0 performed with componentwise errors in the sets Πr(ε)(i, t), i = 1, k,
t ∈ T , is also estimated by the right-hand side of (1.10). Therefore, we can speak about the stability of
the strategy U0 with respect to the inaccuracy of construction of the surfaces Π(i, t) or with respect to
the informational errors of measuring the state of the vector y(t) with respect to the surfaces Π(i, t).

Assume that the approximating game coincides with the initial game and the function B(3) coincides
with the function B(1). Then χ(t0, ϑ) = 0 and ‖γ(1) − γ(2)‖M = 0. Moreover, as a u-stable function V (2),
let us use the value function Γ(1) of the initial state, and let Conditions 1 and 2 hold. As a result, we
obtain

Γ(1)(t0, x0, U, Δ) ≤ V (1)(t0, x0) + ε.

This means that any single-valued strategy U0 defined by using the surfaces Π(i, t) is a universal optimal
strategy in game (1.1) and has the stability property.

Therefore, if the function B(1) and also the cost function γ(1) satisfy the Lipschitz condition, the
switching surfaces Π(i, t), i = 1, k, t ∈ T , are constructed in the framework of the initial game (1.1), and
Conditions 1 and 2 hold, then as a universal optimal strategy U∗, we can take the strategy U0.

The proof of Theorem 1 for β > 0 is given in Secs. 2–8. The case β = 0 is analyzed in Sec. 9 and uses
the results of Secs. 2 and 3.

Theorem 1 gives no method for choosing the numbers r(ε) and Δ(ε). Therefore, estimate (1.10) is not
constructive.

In the case k = 1, i.e., when the control action u of the first player is scalar and satisfies the constraint
|u| ≤ μ, we can give an explicit estimate of the guarantee of the first player. In Sec. 10, we will prove the
following assertion.

Theorem 2. For k = 1, let the conditions imposed on systems (1.1) and (1.4) and also on the functions
V (2) and B(3), including Condition 1, hold. Let r ≥ 0 and Δ > 0. Then for any single-valued strategy U
of the first player that is a single-value selection of the multivalued function U r and for any initial position
(t0, x0) ∈ Y, the following estimate holds:

Γ(1)(t0, x0, U, Δ) ≤ V (2)(t0, x0) + 2λ
√

(2σμΔ + r)βμ(ϑ − t0)

+ 4λσμΔ + λr + λχ(t0, ϑ) + ‖γ(1) − γ(2)‖M .

2. Main Lemma

2.1. Concept of nearness of a given vector to a set of other vectors. Let ζ > 0. We say that a
vector a ∈ R

n is ζ-close to a set of vectors bi ∈ R
n, i = 1, s, s ≥ 1, if the module of the projection of the

vector a on the orthogonal complement in R
n of the linear subspace spanned by the vectors bi, i = 1, s,

does not exceed the number ζ.
A vector a ∈ R

n is said to be ζ-small if |a| ≤ ζ. Therefore, the ζ-smallness of the vector a means its
ζ-closeness to the zero vector.

For F ⊂ I, ζ > 0, and t ∈ T , by the symbol H(F, ζ, t) we denote the set of all subscripts j ∈ I \ F for
each of which the vector B

(3)
j (t) is ζ-close to the set of vectors B

(3)
i (t), i ∈ F . If F = ∅, then H(F, ζ, t)

means the set of all j ∈ I for each of which the vector B
(3)
j (t) is ζ-small.
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2.2. Formulation of the lemma and comments. For two compact sets X and Y in R
n, let

d̂(X, Y ) := max
x∈X

min
y∈Y

|x − y|

be the Hausdorff deviation of the set X from the set Y . We set

G(i)
v (t∗, t∗) :=

⋃

v(·)∈K(i)

t∗∫

t∗

C(i)(t)v(t)dt, i = 1, 2.

The sets G
(1)
v (t∗, t∗) and G

(2)
v (t∗, t∗) are convex and compact. The following estimate holds:

d̂(G(1)
v (t∗, t∗), G(2)

v (t∗, t∗)) ≤
t∗∫

t∗

max
|�|≤1

[

max
q∈Q(1)

	′C(1)(t)q − max
q∈Q(2)

	′C(2)(t)q
]

dt. (2.1)

We denote by G(1)(t, t∗, x∗) the reachable set of system (1.1) at the instant t for the initial state x∗ at
the instant t∗ and for all admissible open-loop controls u(·) and v(·) on the closed interval [t∗, t].

Similarly, we denote by G(2)(t, t∗, x∗) the reachable set of system (1.4) at time t. We set

G(2)�(t, t∗, x∗) := G(2)(t, t∗, x∗) + B(2(t − t∗)σμ).

Here, B(r) is the ball of radius r in R
n.

The lemma formulated below is said to be the main one.

Lemma 2.1. Let (t∗, x∗) ∈ Z, δ > 0, and t∗ + δ ≤ ϑ. Fix a set F ⊂ I and a number ζ > 0. Choose a
certain set H ⊂ H(F, ζ, t∗ + δ). Assume that for all i ∈ I \ (F ∪H), t ∈ [t∗, t∗ + δ], the following relations
hold :

G(1)(t, t∗, x∗) ∩ Π(i, t) = ∅, G(2)�(t, t∗, x∗) ∩ Π(i, t) = ∅. (2.2)

Further, assign a number ω ∈ [0, δ], and let y(1∗)(·) be the motion of system (1.1) with respect to admissible
open-loop controls u(·) and v(·) starting from the point x∗ at the instant t∗, and, moreover, for any
i ∈ I \ (F ∪H) and any t ∈ [t∗ + ω, t∗ + δ], in the case x∗ ∈ Π+(i, t∗) let the relation ui(t) = μi hold, and
in the case x∗ ∈ Π−(i, t∗), let the relation ui(t) = −μi hold. Then the following estimate holds:

V(F, t∗ + δ, y(1∗)(t∗ + δ)) ≤ V (2)(t∗, x∗) + λδ2
k∑

i=1

βiμi

+2λζδ
∑

i∈H

μi + 2λω
∑

i/∈F∪H

σiμi + λχ(t∗, t∗ + δ).
(2.3)

The meaning of this assertion consists in that V(F, t∗ + δ, y(1∗)(t∗ + δ)) does not considerably increase
as compared with the value of the function V (2) at the position (t∗, x∗), despite the fact that on the
closed interval [t∗, t∗ + δ], for subscripts i ∈ F , an arbitrary admissible control ui(·) acts. For subscripts
j ∈ H, the control uj(·) is also arbitrary. In the case i /∈ F ∪ H, it is assumed that on the closed interval
[t∗ + ω, t∗δ], a constant “regular” control of the first player, corresponding to the part of the space with
respect to the surface Π(i, t∗) in which the point x∗ lies (i.e., in Π+(i, t∗) or Π−(i, t∗)), acts. By condition,
the motion y(1∗)(t), emanating from the point x∗ /∈ Π(i, t∗), i /∈ F ∪H, at time t∗ cannot enter Π(i, t) for
any t ∈ [t∗, t∗ + δ].

2.3. Proof of the lemma. By the symbol W
(2)
c we denote the level set (Lebesgue set) of function V (2)

corresponding to the number c. The section at instant t is denoted by W
(2)
c (t).
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For the control v(·) ∈ K(1) given in the condition of the lemma, in the set G
(1)
v (t∗, t∗ + δ), we define

the point

g :=

t∗+δ∫

t∗

C(1)(t)v(t)dt.

Let g be the point of the set G
(2)
v (t∗, t∗ + δ) nearest to it. Choose v(·) ∈ K(2) such that

g =

t∗+δ∫

t∗

C(2)(t)v(t)dt.

We set c∗ := V (2)(t∗, x∗).
Using the u-stability of the function V (2), for the control v(·), we find u(·) such that for the motion

y(2∗)(t) := y(2∗)(t; t∗, x∗, u(·), v(·)) emanating from the point x∗ at the instant of time t∗, the following
inclusion holds:

y(2∗)(t∗ + δ) ∈ W (2)
c∗ (t∗ + δ). (2.4)

1. Denote

J1 :=

t∗+δ∫

t∗

B(1)(t)u(t)dt −
t∗+δ∫

t∗

B(2)(t)u(t)dt, J2 :=

t∗+δ∫

t∗

C(1)(t)v(t)dt −
t∗+δ∫

t∗

C(2)(t)v(t)dt.

Then
y(1∗)(t∗ + δ) − y(2∗)(t∗ + δ) = J1 + J2.

We have

J1 =
k∑

i=1

t∗+δ∫

t∗

(
B

(1)
i (t) − B

(3)
i (t)

)
ui(t) dt −

k∑

i=1

t∗+δ∫

t∗

(
B

(2)
i (t) − B

(3)
i (t)

)
ui(t) dt

+
k∑

i=1

t∗+δ∫

t∗

(
B

(3)
i (t) − B

(3)
i (t∗ + δ)

)(
ui(t) − ui(t)

)
dt

+
k∑

i=1

B
(3)
i (t∗ + δ)

t∗+δ∫

t∗

(
ui(t) − ui(t)

)
dt,

(2.5)

J2 = g − g. (2.6)

2. For each i /∈ F ∪ H, on the closed interval [t∗, t∗ + δ], we introduce an auxiliary constant control
u∗i(·) equal to the constant value of the control ui(·) on the closed interval [t∗ + ω, t∗ + δ].

Denote

ẑ := y(2∗)(t∗ + δ) +
∑

i/∈F∪H

B
(3)
i (t∗ + δ)

t∗+δ∫

t∗

(u∗i(t) − ui(t))dt.

Using estimate (2.1) and the assumption on the form of the control ui(·) on the closed interval
[t∗ + ω, t∗ + δ], i ∈ I \ (F ∪ H), we prove that

V (2)(t∗ + δ, ẑ) ≤ V (2)(t∗ + δ, y(2∗)(t∗ + δ)). (2.7)

Indeed, the assumption

G(1)(t, t∗, x∗) ∩ Π(i, t) = ∅, i /∈ F ∪ H, t ∈ [t∗, t∗ + δ],
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means that for each i /∈ F ∪ H, any motion of system (1.1) either belongs to Π+(i, t) on the whole
closed interval [t∗, t∗ + δ] or belongs to Π−(i, t) also on this entire interval. The first case arises when
x∗ ∈ Π+(i, t∗), and the second arises when x∗ ∈ Π−(i, t∗). We obtain from the condition imposed on the
control action ui(t), i /∈ F ∪ H, that u∗i(t) ≡ μi in the first case and u∗i(t) ≡ −μi in the second.

We now turn to the condition

G(2)�(t, t∗, x∗) ∩ Π(i, t) = ∅, i /∈ F ∪ H, t ∈ [t∗, t∗ + δ].

This condition implies that for each i /∈ F ∪ H, the following inclusion holds in the case x∗ ∈ Π+(i, t∗):

G(2)�(t∗ + δ, t∗, x∗) ⊂ Π+(i, t∗ + δ),

and in the case x∗ ∈ Π−(i, t∗), the inclusion

G(2)�(t∗ + δ, t∗, x∗) ⊂ Π−(i, t∗ + δ)

holds.
Let us enumerate the subscripts i /∈ F ∪ H in an arbitrary order: i1, i2, . . . , is. Take the first subscript

i1. Assume that x∗ ∈ Π+(i1, t∗). Then

y(2∗)(t∗ + δ) ∈ Π+(i1, t∗ + δ),

zi1 := y(2∗)(t∗ + δ) + B
(3)
i1

(t∗ + δ)

t∗+δ∫

t∗

(
μi1 − ui1(t)

)
dt ∈ G(2)�

(
t∗ + δ, t∗, x∗

)
⊂ Π+(i1, t∗ + δ).

Since μi1 ≥ ui1(t), t ∈ [t∗, t∗ + δ], it follows from this that

V (2)(t∗ + δ, zi1) ≤ V (2)(t∗ + δ, y(2∗)(t∗ + δ)).

We proceed analogously in the case x∗ ∈ Π−(i1, t∗), but now we use the inequality −μi1 ≤ ui1(t),
t ∈ [t∗, t∗ + δ].

Let us pass to the second subscript i2. Assume that x∗ ∈ Π+(i2, t∗). Then

zi1 ∈ Π+(i2, t∗ + δ),

zi2 := zi1 + B
(3)
i2

(t∗ + δ)

t∗+δ∫

t∗

(μi2 − ui2(t))dt ∈ G(2)�(t∗ + δ, t∗, x∗) ⊂ Π+(i2, t∗ + δ).

Since μi2 ≥ ui2(t), t ∈ [t∗, t∗ + δ], it follows from this that

V (2)(t∗ + δ, zi2) ≤ V (2)(t∗ + δ, zi1).

We proceed analogously in the case x∗ ∈ Π−(i2, t∗).
Continuing this process sequentially up to the last subscript is, we arrive at the following chain of

inequalities:

V (2)(t∗ + δ, zis) ≤ V (2)(t∗ + δ, zis−1) ≤ . . . V (2)(t∗ + δ, zi1) ≤ V (2)(t∗ + δ, y(2∗)(t∗ + δ)).

Therefore,
V (2)(t∗ + δ, ẑ) = V (2)(t∗ + δ, zis) ≤ V (2)(t∗ + δ, y(2∗)(t∗ + δ)).

Inequality (2.7) is proved.
By (2.4), we obtain from (2.7) the inclusion

ẑ ∈ W (2)
c∗ (t∗ + δ). (2.8)

3. Using the notation introduced by formulas (2.5) and (2.6), we have

y(1∗)(t∗ + δ) − ẑ = y(1∗)(t∗ + δ) − y(2∗)(t∗ + δ) −
∑

i/∈F∪H

B
(3)
i (t∗ + δ)

t∗+δ∫

t∗

(u∗i(t) − ui(t))dt
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= J1 + J2 −
∑

i/∈F∪H

B
(3)
i (t∗ + δ)

t∗+δ∫

t∗

(u∗i(t) − ui(t))dt.

By the symbol π we denote the operator of orthogonal projection of the space R
n on the subspace

orthogonal to the subspace spanned by the vectors B
(3)
i (t∗ + δ), i ∈ F .

Now we take into account that the modules of the controls ui(t) and ui(t) are bounded by the number
μi and each of the functions B

(3)
i satisfies the Lipshitz condition with constant βi. Also, we take into

account that πB
(3)
i (t∗ + δ) = 0 for i ∈ F and any vector B

(3)
j (t∗ + δ), j ∈ H, is ζ-close to the set of vectors

B
(3)
i (t∗ + δ), i ∈ F .
We obtain

∣
∣
∣
∣
∣
∣
πJ1 − π

∑

i/∈F∪H

B
(3)
i (t∗ + δ)

t∗+δ∫

t∗

(u∗i(t) − ui(t))dt

∣
∣
∣
∣
∣
∣

≤
k∑

i=1

μi

t∗+δ∫

t∗

(∣
∣B

(1)
i (t) − B

(3)
i (t)

∣
∣+

∣
∣B

(2)
i (t) − B

(3)
i (t)

∣
∣
)
dt

+δ2
k∑

i=1

βiμi + 2ζδ
∑

i∈H

μi +

∣
∣
∣
∣
∣
∣
π
∑

i/∈F∪H

B
(3)
i (t∗ + δ)

t∗+δ∫

t∗

(ui(t) − u∗i(t))dt

∣
∣
∣
∣
∣
∣
.

By (2.6) and (2.1), we have

|πJ2| = |π(g − g)| ≤ |g − g| ≤
t∗+δ∫

t∗

max
|�|≤1

[

max
q∈Q(1)

	′C(1)(t)q − max
q∈Q(2)

	′C(2)(t)q
]

dt.

Taking into account the definition of the functions u∗i(t) on [t∗, t∗ + δ] and also the inequalities

|B(3)
i (t∗ + δ)| ≤ σi, i /∈ F ∪ H,

we obtain
∣
∣
∣
∣
∣
∣
π
∑

i/∈F∪H

B
(3)
i (t∗ + δ)

t∗+δ∫

t∗

(
ui(t) − u∗i(t)

)
dt

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
π
∑

i/∈F∪H

B
(3)
i (t∗ + δ)

t∗+ω∫

t∗

(
ui(t) − u∗i(t)

)
dt

∣
∣
∣
∣
∣
∣
≤ 2ω

∑

i/∈F∪H

σiμi.

Finally, we arrive at the inequality

|πy(1∗)(t∗ + δ) − πẑ| ≤ δ2
k∑

i=1

βiμi + 2ζδ
∑

i∈H

μi + 2ω
∑

i/∈F∪H

σiμi + χ(t∗, t∗ + δ). (2.9)

Let x̃ be the point nearest to the set W
(2)
c∗ (t∗ + δ) on the plane A(F, t∗ + δ, y(1∗)(t∗ + δ)). It follows

from (2.8) and the definition of the operator π that

d̂({x̃}, W (2)
c∗ (t∗ + δ)) ≤ |x̃ − ẑ| ≤ |πx̃ − πẑ| = |πy(1∗)(t∗ + δ) − πẑ|.

Therefore,

V (2)(t∗ + δ, x̃) ≤ c∗ + λ|πy(1∗)(t∗ + δ) − πẑ| = V (2)(t∗, x∗) + λ|πy(1∗)(t∗ + δ) − πẑ|.
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With account for (2.9), the required inequality (2.3) follows from the inequality

V(F, t∗ + δ, y(1∗)(t∗ + δ)) ≤ V (2)(t∗ + δ, x̃).

2.4. Remarks. 1. Consider the degenerate case where F = ∅. In this case, the set H consists of
subscripts i = 1, k for each of which |B(3)

i (t∗ + δ)| ≤ ζ. Estimate (2.3) preserves its form, but

V(F, t∗ + δ, y(1∗)(t∗ + δ)) = V (2)(t∗ + δ, y(1∗)(t∗ + δ)).

Therefore, in the degenerate case F = ∅, we have

V (2)(t∗ + δ, y(1∗)(t∗ + δ)) ≤ V (2)(t∗, x∗) + λδ2
k∑

i=1

βiμi

+2λζδ
∑

i∈H

μi + 2λω
∑

i/∈H

σiμi + λχ(t∗, t∗ + δ).
(2.10)

2. Let the set F be such that the number of linearly independent vectors B
(3)
i (t∗ + δ), i ∈ F , is equal

to n, i.e., coincides with the dimension of the space R
n. Then

V(F, t∗ + δ, y(1∗)(t∗ + δ)) = min
z∈Rn

V (2)(t∗ + δ, z) ≤ min
z∈Rn

V (2)(t∗, z) ≤ V (2)(t∗, x∗).

Therefore,
V(F, t∗ + δ, y(1∗)(t∗ + δ)) ≤ V (2)(t∗, x∗).

Moreover, the controls ui(·), i /∈ F , on the closed interval [t∗, t∗ + δ], as well as the controls ui(·), i ∈ F ,
can be arbitrary.

2.5. Estimate of the variation of the function V (2) in a particular case. Let us formulate an
assertion that follows from estimate (2.10).

Proposition 2.1. Let (t∗, x∗) ∈ Z, t∗ ∈ (t∗, ϑ]. Assign a number ζ > 0 and choose a set of subscripts
H ⊂ I so that for any j ∈ H and any t ∈ [t∗, t∗], the inequality |B(3)

j (t)| ≤ ζ holds. Let 0 ≤ ω ≤ t∗ − t∗,
and along the motion y(1∗)(·) emanating from the point x∗ at the instant t∗, for any i ∈ I \ H, either
y(1∗)(t) ∈ Π+(i, t) on the closed interval [t∗, t∗] and, moreover, ui(t) = μi on [t∗+ω, t∗] or y(1∗)(t) ∈ Π−(i, t)
on the closed interval [t∗, t∗] and, moreover, ui(t) = −μi on [t∗ +ω, t∗]. Then the following estimate holds
for any t ∈ [t∗, t∗]:

V (2)(t, y(1∗)(t)) ≤ V (2)(t∗, x∗) + 2λζ(t − t∗)
∑

i∈H

μi + 2λω
∑

i/∈H

σiμi + λχ(t∗, t). (2.11)

Proof. Divide the closed interval [t∗, t∗] by instants ts, s = 1, e, t1 = t∗, te = t∗, with the step δ so that
for any closed interval [ts, ts+1], s = 1, 2, . . . , e − 1, of the obtained partition and for t ∈ [ts, ts+1], i /∈ H,
the following conditions hold:

G(1)(t, ts, y(1∗)(ts)) ∩ Π(i, t) = ∅, G(2)�(t, ts, y(1∗)(ts)) ∩ Π(i, t) = ∅.

This can be done by using the assumption imposed on the location of y(1∗)(t) with respect to the surfaces
Π(i, t), i /∈ H.

By (2.10), for each s such that ts > t∗ + ω, we have the relation

V (2)(ts+1, y
(1∗)(ts+1)) ≤ V (2)(ts, y(1∗)(ts)) + λδ2

n∑

i=1

βiμi + 2λζδ
∑

i∈H

μi + λχ(ts, ts+1). (2.12)

For s such that ts ∈ [t∗, t∗ + ω], by (2.10) we obtain

V (2)(ts+1, y
(1∗)(ts+1)) ≤ V (2)(ts, y(1∗)(ts))+λδ2

n∑

i=1

βiμi +2λζδ
∑

i∈H

μi +2λδ
∑

i/∈H

σiμi +λχ(ts, ts+1). (2.13)
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Sequentially applying estimates (2.12) and (2.13) for s = 1, 2, . . . , e − 1, we arrive at the inequality

V (2)(t∗, y(1∗)(t∗)) ≤ V (2)(t∗, x∗) + λ(t∗ − t∗)δ
k∑

i=1

βiμi

+ 2λζ(t∗ − t∗)
∑

i∈H

μi + 2λ(ω + δ)
∑

i/∈H

σiμi + λχ(t∗, t∗).

Passing to the limit as δ → 0, we obtain estimate (2.11).

Let us apply the assertion just proved to the case where all control actions ui(t), i = 1, k, are arbitrary
on [t∗, t∗] and a certain smallness of the vectors B

(3)
i (t), i = 1, k, t ∈ [t∗, t∗], specially specified, is not

presupposed. As the characteristic of smallness, we take

ζ = σ = max
i=1,k
t∈T

|B(3)
i (t)|.

The following assertion holds.

Proposition 2.2. Let (t∗, x∗) ∈ Z, t∗ ∈ (t∗, ϑ]. Let the motion y(1∗)(·) on [t∗, t∗] emanating from the
point x∗ at the instant t∗ be generated by arbitrary admissible open-loop controls u(·) and v(·) of the first
and second players. Then the following estimate holds for any t ∈ [t∗, t∗]:

V (2)(t, y(1∗)(t)) ≤ V (2)(t∗, x∗) + 2λσμ(t − t∗) + λχ(t∗, t). (2.14)

3. Sets Πc(F, t)

3.1. Definition of the sets Πc(F, t). The sets Π(i, t) introduced by formulas (1.5)–(1.7) have the
upper semicontinuity property in the argument t. However, there cannot be lower semicontinuity in t

even in the case where the vector B
(3)
i (t) using which we construct the set Π(i, t) does not vanish on the

interval T .
The sets Πr(i, t) are a geometric r-extension of the sets Π(i, t), and, therefore, they are also upper

semicontinuous in t, but there can be no lower semicontinuity. Therefore, unfortunately, we cannot speak
about the continuous variation of sets Πr(i, t) in the argument t.

In this connection, we consider one more variant of extension of the sets Π(i, t), but using only the
quantity c, which, in contrast to r, means not the distance in the direction of the vector B

(3)
i (t) or in the

opposite direction but the overfall of values of the function V (2). Precisely, for all i = 1, k, t ∈ T , and
c ≥ 0, we set

Πc(i, t) :=
{
x ∈ R

n : V (2)(t, x) − V(i, t, x) ≤ c
}
. (3.1)

For c = 0, we have Πc(i, t) = Π(i, t).
We agree to call the set Πc(i, t) a c-neighborhood of the surface Π(i, t) and distinguish it from the set

Πr(i, t), i.e., from the r-neighborhood of the surface Π(i, t).
Also, we will need the sets

Πc(F, t) :=
{
x ∈ R

n : V (2)(t, x) − V(F, t, x) ≤ c
}
, (3.2)

which will be considered for all F ⊂ I, t ∈ T and c ≥ 0. Formula (3.1) is a particular case of (3.2), where
F consists of a single element.

If c∗ < c∗, then
Πc∗(F, t) ⊂ int Πc∗(F, t).

Here, int is the interior of a set.
Below we will show that if for any t from a certain closed interval T ⊂ T , the vectors B

(3)
i (t), i ∈ F ,

are linearly independent, then the function (t, x) �→ V(F, t, x) is continuous on the set T × R
n. We will

prove the upper semicontinuity property of the sets Πc(F, t) for c ≥ 0, t ∈ T . We will prove that if on
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a closed set T ⊂ T , the vector B
(3)
i (t) does not vanish, then the multivalued function (c, t) �→ Πc(i, t) is

continuous for c > 0, t ∈ T .

3.2. Continuity of the functions V(F, ·, ·). In this subsection, we will prove the following assertion.

Lemma 3.1. For any set F ⊂ I, the upper semicontinuity property of the function (t, x) �→ V(F, t, x)
holds on the set Z. If, for a certain closed interval T ⊂ T , the vectors B

(3)
i (t), i ∈ F , are linearly

independent for any t ∈ T , then the function (t, x) �→ V(F, t, x) also has the lower semicontinuity property
on the set T × R

n.

Proof. Preparatorily, as an obvious fact, we note the lower semicontinuity property of the function (t, x) �→
A(F, t, x) on the set T×R

n and its upper semicontinuity on the set T ×R
n under the additional assumption

on the linear independence of the vectors B
(3)
i (t), i ∈ F , for each t ∈ T .

1. In the set Z, we consider an arbitrary sequence (tn, xn) → (t∗, x∗). Let us show that

lim
n→∞V(F, tn, xn) ≤ V(F, t∗, x∗). (3.3)

Let a point z∗ on the plane A(F, t∗, x∗) be such that V (2)(t∗, z∗) = V(F, t∗, x∗). The lower semicontinuity
of the function A(F, ·, ·) implies that for each n = 1, 2, . . . , there exists zn ∈ A(F, tn, xn) such that zn → z∗.
For example, we can take

zn = xn +
∑

i∈F

b∗i B
(3)
i (tn),

where the coefficients b∗i , i ∈ F , satisfy the relation

z∗ = x∗ +
∑

i∈F

b∗i B
(3)
i (t∗).

Since V(F, tn, xn) ≤ V (2)(tn, zn), it follows that

lim
n→∞V(F, tn, xn) ≤ lim

n→∞V (2)(tn, zn) = V (2)(t∗, z∗) = V(F, t∗, x∗).

Therefore, relation (3.3) expressing the upper semicontinuity of the function V(F, ·, ·) is proved.
Now let us assume that the vectors B

(3)
i (t), i ∈ F , are linearly independent for any t from the closed

interval T ⊂ T . Choose an arbitrary sequence (tn, xn) → (t∗, x∗), (tn, xn) ∈ T × R
n. Let us prove the

inequality
lim

n→∞
V(F, tn, xn) ≥ V(F, t∗, x∗). (3.4)

For each n = 1, 2, . . . , let a point zn on the plane A(F, tn, xn) be such that V (2)(tn, zn) = V(F, tn, xn).
A. We first prove the boundedness of the sequence zn. The boundedness property is a consequence of

an infinite growth |γ(2)(x)| → ∞ of the cost function γ(2) as |x| → ∞.
We have V (2)(tn, xn) → V (2)(t∗, x∗). Given a function κ > 0, we choose a number N such that the

following inequality holds for n ≥ N :

V (2)(tn, xn) ≤ V (2)(t∗, x∗) + κ.

Consider the level set M
(2)
κ∗ := {x ∈ R

n : γ(2)(x) ≤ κ∗} of the function γ(2) corresponding to the number
κ∗ := V (2)(t∗, x∗)+κ. The set M

(2)
κ∗ is bounded. But then, uniformly in t ∈ T , the set W

(2)
κ∗ (t) is bounded.

Since zn ∈ W
(2)
κ∗ (tn), it follows that the sequence zn is bounded.

B. From the sequence zn, we extract a convergent subsequence zk realizing the lower limit
lim

n→∞
V (2)(tn, zn). Let zk → z. Then

lim
n→∞

V(F, tn, xn) = lim
n→∞

V (2)(tn, zn) = lim
k→∞

V (2)(tk, zk) = V (2)(t∗, z). (3.5)
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By the assumption of the linear independence of the vectors B
(3)
i (t), i ∈ F , for each t ∈ T , we have

the upper semicontinuity property of the function A(F, ·, ·) on the set T × R
n. Therefore, the conditions

zk ∈ A(F, tk, xk) and zk → z imply the inclusion z ∈ A(F, t∗, x∗). Hence

V (2)(t∗, z) ≥ V(F, t∗, x∗).

As a result, taking into account (3.5), we have

lim
n→∞

V(F, tn, xn) = V (2)(t∗, z) ≥ V(F, t∗, x∗).

Therefore, relation (3.4), which means the lower semicontinuity of the function V(F, ·, ·), is proved.

3.3. Upper semicontinuity of the mapping (c, t) �→ Πc(F, t). Continuity of the mapping
(c, t) �→ Πc(i, t).

Proposition 3.1. For any set F ⊂ I, the mapping (c, t) �→ Πc(F, t) is upper semicontinuous on the set
c ≥ 0, t ∈ T .

Proof. Fix arbitrary c∗ ≥ 0 and t∗ ∈ T and consider arbitrary sequences cn → c∗ and tn → t∗. For each
n = 1, 2, . . . , choose zn ∈ Πcn(F, tn) and assume that zn → z∗. Let us show that z∗ ∈ Πc∗(F, t∗). This
means the upper semicontinuiuty.

We have
V (2)(tn, zn) − V(F, tn, zn) ≤ cn ⇒ V (2)(tn, zn) ≤ cn + V(F, tn, zn).

Taking into account the upper semicontinuity of the function V(F, ·, ·), we obtain from this that

V (2)(t∗, z∗) = lim
n→∞V (2)(tn, zn) ≤ lim

n→∞ cn + lim
n→∞V(F, tn, zn) ≤ c∗ + V(F, t∗, z∗).

Therefore,
V (2)(t∗, z∗) − V(F, t∗, z∗) ≤ c∗.

Hence z∗ ∈ Πc∗(F, t∗).

Lemma 3.2. Let i ∈ I, and on a certain closed interval T ⊂ T , let the vector B
(3)
i (t) do not vanish.

Then on the set c > 0, t ∈ T , the mapping (c, t) �→ Πc(i, t) is continuous.

Proof. Taking into account Proposition 3.1, we see that it suffices to prove the lower semicontinuity of
the mapping (c, t) �→ Πc(i, t) on the set c > 0, t ∈ T .

Let c∗ > 0, t∗ ∈ T , and certain sequences cn → c∗ and tn → t∗, where tn ∈ T , be given. Take an
arbitrary z∗ ∈ Πc∗(i, t∗). Let us show the possibility of choosing zn ∈ Πcn(i, tn) such that zn → z∗. This
means the lower semicontinuity.

Define a point y∗ ∈ A(i, t∗, z∗) such that V (2)(t∗, y∗) = V(i, t∗, z∗). We have V (2)(t∗, y∗) ≤ V (2)(t∗, z∗).
1. Consider the case where V (2)(t∗, y∗) < V (2)(t∗, z∗). Then y∗ 	= z∗. Note that for any point z on the

line passing through y∗ and z∗, the relation V(i, t∗, z) = V(i, t∗, z∗) holds.
Fix a positive κ < c∗. Using the continuity of the functions V(i, ·, y∗) and V (2)(·, y∗), we choose a

number Ñ such that the following inequalities hold for any n ≥ Ñ :

V(i, tn, y∗) ≥ V(i, t∗, y∗) − κ

2
, V (2)(tn, y∗) ≤ V (2)(t∗, y∗) +

κ

2
, cn ≥ κ.

Then for n ≥ Ñ , we have

V (2)(tn, y∗) − V(i, tn, y∗) ≤ V (2)(t∗, y∗) +
κ

2
− V(i, t∗, y∗) +

κ

2
= κ ≤ cn.

Therefore,
V (2)(tn, y∗) − V(i, tn, y∗) ≤ cn, n ≥ Ñ . (3.6)

Further, we assume that n ≥ Ñ .

6925



On the closed interval [y∗, z∗], we consider points z for which

V (2)(tn, z) − V(i, tn, z) ≤ cn. (3.7)

By (3.6), there exists at least one such point z = y∗. Using the continuity of the functions V (2)(tn, ·)
V(i, tn, ·), among the points z ∈ [y∗, z∗] satisfying (3.7) we choose a point nearest to z∗ and denote it by
zn. Note that if zn 	= z∗, then for such points, we have the equality in (3.7).

Let us show that zn → z∗. Assume the contrary, i.e., let there exist a subsequence zk → ẑ, ẑ 	= z∗. We
assume that zk 	= z∗ for any k. Then using the subscript k instead of the subscript n and the symbol zk

instead of z in (3.7), we obtain the equality. Precisely,

V (2)(tk, zk) − V(i, tk, zk) = ck. (3.8)

We set
η := V (2)(t∗, z∗) − V (2)(t∗, ẑ).

Taking into account Condition 1 and the inequality V (2)(t∗, y∗) < V (2)(t∗, z∗), we have η > 0. Choose
N such that the following inequalities hold for any k ≥ N :

V(i, tk, zk) ≥ V(i, t∗, ẑ) − η

4
= V(i, t∗, z∗) − η

4
,

V (2)(tk, zk) ≤ V (2)(t∗, ẑ) +
η

4
, ck ≥ c∗ − η

4
.

(3.9)

Using (3.8) and (3.9), we obtain

V (2)(t∗, z∗) − V(i, t∗, z∗) = V (2)(t∗, z∗) − V (2)(t∗, ẑ) + V (2)(t∗, ẑ)

−V (2)(tk, zk) + V (2)(tk, zk) − V(i, tk, zk) + V(i, tk, zk) − V(i, t∗, z∗)

≥ η − η

4
+ ck − η

4
≥ η − η

4
+ c∗ − η

4
− η

4
= c∗ +

η

4
.

The inequality

V (2)(t∗, z∗) − V(i, t∗, z∗) ≥ c∗ +
η

4
contradicts the inclusion z∗ ∈ Πc∗(i, t∗).

Therefore, we have proved that zn → z∗. Moreover, zn ∈ Πcn(i, tn).
2. Consider the case where V (2)(t∗, y∗) = V (2)(t∗, z∗). We have

V (2)(t∗, z∗) − V(i, t∗, z∗) = 0.

Using the continuity of the functions V (2)(·, z∗) and V(i, ·, z∗), we choose N̂ so that the following inequal-
ities hold for any n ≥ N̂ :

V (2)(tn, z∗) − V(i, tn, z∗) ≤ c∗

2
, cn ≥ c∗

2
.

Then
V (2)(tn, z∗) − V(i, tn, z∗) ≤ cn.

The latter inequality means that z∗ ∈ Πcn(i, tn) for n ≥ N̂ . Therefore, in the desired sequence, we can
take zn = z∗ for n ≥ N̂ .

3.4. Assertion on the zero distance between the part of the set Πc∗(F1, t) located outside
the set Πc(F1 ∪ F2, t) and the set Πc∗(F2, t). Let us formulate a consequence of Lemma 3.1 and
Proposition 3.1. In this case, the symbol d means the distance between two sets:

d(A, B) := inf
{
|a − b| : a ∈ A, b ∈ B

}
.
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Lemma 3.3. Let F ⊂ I be a certain set consisting of more than one element and let T be a closed
interval in T . Assume that the vectors B

(3)
i (t), i ∈ F , are linearly independent for any t ∈ T . Fix a

number c > 0. Decompose the set F into disjoint subsets F1 and F2. Then for any bounded set X ⊂ R
n,

there exist positive numbers c∗ and e∗ such that

d

((

Πc∗(F1, t) ∩ X
)

\ int Πc(F, t), Πc∗(F2, t)

)

≥ e∗

for all t ∈ T .

Proof. Assuming the contrary, we choose subsequences of positive numbers cn → 0 and en → 0 and then
sequences tn ∈ T of instants of time and points

z1n ∈ (Πcn(F1, tn) ∩ X )\ int Πc(F, tn), z2n ∈ Πcn(F2, tn)

so that |z1n − z2n| ≤ en. Using the boundedness of the sets T and X , we extract convergent subsequences
tk → t∗ and z1k → z∗. For the corresponding subsequence z2k of points z2n, we obtain z2k → z∗.

By the upper semicontinuity of the mappings (c, t) �→ Πc(F1, t), (c, t) �→ Πc(F2, t), we have

z∗ ∈ Π(F1, t∗), z∗ ∈ Π(F2, t∗).

Then, using Condition 2, we conclude that z∗ ∈ Π(F, t∗), and, therefore,

V (2)(t∗, z∗) = V(F, t∗, z∗). (3.10)

Using the continuity of the functions V (2) and V(F, ·, ·) on T × R
n, we choose a number N such that

the following inequalities hold for k ≥ N :

|V (2)(tk, z1k) − V (2)(t∗, z∗)| ≤
c

4
, (3.11)

|V(F, tk, z1k) − V(F, t∗, z∗)| ≤
c

4
. (3.12)

Based on relations (3.10)–(3.12), for k ≥ N we obtain

V (2)(tk, z1k) − V(F, tk, z1k)

= V (2)(tk, z1k) − V (2)(t∗, z∗) + V(F, t∗, z∗) − V(F, tk, z1k)

≤ |V (2)(tk, z1k) − V (2)(t∗, z∗)| + |V(F, t∗, z∗) − V(F, tk, z1k)| ≤ 2 · c

4
=

c

2
.

The inequality

V (2)(tk, z1k) − V(F, tk, z1k) ≤
c

2
, k ≥ N,

means that
z1k ∈ Πc/2(F, tk), k ≥ N.

Since Πc/2(F, tk) ⊂ int Πc(F, tk), we obtain a contradiction with z1k /∈ int Πc(F, tk).

3.5. Multivalued function Uc. For c ≥ 0, i = 1, k, and t ∈ T , we set

Πc
−(i, t) := {x ∈ R

n : x + αB
(3)
i (t) /∈ Πc(i, t), ∀α ≥ 0},

Πc
+(i, t) := {x ∈ R

n : x + αB
(3)
i (t) /∈ Πc(i, t), ∀α ≤ 0}.

For each i = 1, k, on Z, let us introduce the scalar multivalued function

Uc
i (t, x) :=

⎧
⎪⎨

⎪⎩

{−μi}, x ∈ Πc−(i, t),
{μi}, x ∈ Πc

+(i, t),
[−μi, μi], x ∈ Πc(i, t).
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On Z, let us define the vector multivalued function

Uc(t, x) :=

⎛

⎜
⎜
⎜
⎝

Uc
1(t, x)

Uc
2(t, x)

...
Uc

k(t, x)

⎞

⎟
⎟
⎟
⎠

.

4. Independence and Dependence Exponents of the Vectors B
(3)
i (t)

As is seen from Sec. 3, in considering a certain set of vectors B
(3)
i (t), i ∈ F , on the interval T , the

property of linear independence of the vectors B
(3)
i (t), i ∈ F , for any t ∈ T is useful. However, we have no

assumptions that guarantee such a property. Moreover, such assumptions are not natural. For example,
the linear independence is violated if at least one vector B

(3)
i (t) of the set considered vanishes at a certain

instant t ∈ T . To differentiate the cases close to the case of linear independence from the cases of rough
linear independence, we need several concepts. We formulate them for an arbitrary set of vectors in R

n

but will apply them to the vectors B
(3)
i (t).

4.1. Independence and dependence exponents. In the space R
n, let us consider a finite set B of

vectors bi, i = 1, s, s ≥ 1. By the symbol G(B) we denote the subspace spanned by the set B. Let α > 0.
The set B for s ≥ 2 is said to be linearly independent with exponent α if

d(bi,G(B \ bi)) ≥ α, i = 1, s.

Note that the independence with exponent α implies the ordinary linear independence. Also, it is
obvious that any finite set of linearly independent vectors is independent with a certain exponent α > 0.

In the case where s = 1, by the linear independence with exponent α we mean the condition that the
length of the vector considered is greater than or equal to α.

The set B for s ≥ 2 is said to be dependent with exponent α if, among the vectors of a given set, there
exists a vector bi∗ such that

d(bi∗ ,G(B \ bi∗)) ≤ α,

i.e., there exists a vector α-close to the set of other vectors.
For s = 1, the dependence with exponent α means that the length of the vector considered does not

exceed α.
Let us formulate the following assertion on the estimate for closeness of a given vector to the set of

other vectors.

Lemma 4.1. Let a set B of vectors bi ∈ R
n, i = 1, s, that are linearly independent with exponent α be

given. Add one more vector a ∈ R
n to it. Assume that the extended set B ∪ a is dependent with exponent

p < α. Then the vector a is ζ-close to the set B with the characteristic ζ = (1 + 2D/α)p, where D is the
maximum of the lengths of s + 1 vectors from the set B ∪ a.

Proof. We denote by α̂ the maximum independence exponent of vectors of the set B. Let p̂ be the
minimum dependence exponent of vectors of the set B ∪ a. The minimum characteristic of closeness of
the vector a to the set B is denoted by ζ̂.

In the set B ∪ a, we distinguish a vector h that is p̂-close to the set (B ∪ a) \ h of other vectors.
1. If one can take the vector a as h, then we obtain

ζ̂ = p̂ ≤ p <

(

1 +
2D

α

)

p,

and the proof is completed.
2. Assume that the vector a cannot be taken as h.
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A. First, consider the case where s = 1, i.e., the case where the set B consists of a single vector, which
must be taken as the vector h. We have α̂ = |h|. The relation p̂/ζ̂ = |h|/|a| holds. Therefore,

ζ̂ =
|a|p̂
|h| =

|a|p̂
α̂

≤ |a|p
α

<

(

1 +
2D

α

)

p.

B. Now let s > 1. Consider the subspace G((B ∪ a) \ h). Let g be an element of this subspace nearest
to h. We set |hg| := |h − g|. We have |hg| = p̂ ≤ p. Also, we note that d(h,G(B \ h)) ≥ α.

Assume that g ∈ G(B \h). Then |hg| ≥ α. Then taking into account the inequality p ≥ |hg|, we obtain
p ≥ α, which contradicts the condition p < α. Hence, g /∈ G(B \ h).

We have
a /∈ G(B \ h), a ∈ G((B ∪ a) \ h),

g ∈ G((B ∪ a) \ h), g /∈ G(B \ h) ⊂ G((B ∪ a) \ h).

Consider the line A1 passing through the points g and a. The line A1 is either parallel to the subspace
G(B \ h) or intersects it.

If the line A1 is parallel to the subspace G(B \ h), then d(a,G(B)) ≤ |hg|. Indeed, drawing the line A2

through the point h, which is parallel to A1, we obtain that it is parallel to G(B \ h). Hence A2 ⊂ G(B).
Therefore, d(a,G(B)) ≤ d(a, A2) ≤ |hg|.

Taking into account the relation |hg| = p̂, from the inequality d(a,G(B)) ≤ |hg|, we obtain d(a,G(B)) ≤
p̂, i.e., the vector a is p̂-close to the set B. This contradicts the assumption that the vector a cannot be
taken as h.

Now let us assume that the line A1 intersects the subspace G(B \ h). Let e be the intersection point.
Let us draw the line A3 through the points h and e. We have A3 ⊂ G(B). Let f be a point on the line A3

such that fa is parallel to hg. Note that |he| ≥ α.
Let us consider the following variants of location of the point e on the line A1.
(a) The point e lies on the ray ga with vertex g being more distant than the point a (Fig. 1). Then

d(a,G(B)) ≤ |fa| < |hg| = p̂, and this contradicts the assumption that the point a cannot be taken as h.
(b) The point e lies on the ray ag with vertex a being more distant than the point g (Fig. 2). We have

|he| ≥ d(h,G(B \ h)) ≥ α.

Denote by k the point on the ray ef nearest to the point a. Note that k ∈ G(B). Hence d(a,G(B)) ≤ |ka|.
Let us estimate |ka|.

We have (see Fig. 2) |ka|/|fa| = cos ϕ = |eg|/|eh|. Therefore,

|ka| = |fa||eg|/|eh|. (4.1)

Since |fa|/|hg| = |ea|/|eg|, it follows that

|fa| =
|hg||ea|
|eg| =

|hg|(|eg| + |ga|)
|eg| = |hg|

(

1 +
|ga|
|eg|

)

. (4.2)
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Using (4.1) and (4.2), we obtain

|ka| = |fa| |eg||eh| = |hg|
(

1 +
|ga|
|eg|

)
|eg|
|eh| =

|hg|
|eh|

(
|eg| + |ga|

)
.

Taking the inequalities |eg| < |eh| and |ga| < |ha| into account, we further have

|ka| <
|hg|
|eh|

(
|eh| + |ha|

)
.

Since |hg| ≤ p, |eh| ≥ α, and |ha| < 2D, it follows that

|ka| < p

(

1 +
|ha|
α

)

<

(

1 +
2D

α

)

p.

Therefore, as the nearest characteristic of the vector a to the set B, we can take ζ = |ka| < (1+2D/α)p.
(c) The point e lies on the ray ag between the points g and a (Fig. 3).
If |ea| ≤ |eg|, then |fa| ≤ |hg|, which contradicts the assumption that a cannot be taken as h.
Let |ea| > |eg|. Introduce the points g∗ and h∗ symmetric to the points g and h with respect to e. Let

k be the point on the ray ef nearest to a. Let us estimate |ka|.
We proceed as in case (b), taking h∗ and g∗ instead of h and g. We have

|ka| = |fa| |eg
∗|

|eh∗| =
|h∗g∗|
|eh∗| (|eg∗| + |g∗a|).

Taking into account that |hg| = |h∗g∗|, |eh| = |eh∗|, and |eg∗| + |g∗a| < |ga| < |ha|, we then obtain

|ka| <
|hg|
|eh| |ha|.

As a result,

|ka| <
2Dp

α
,

and, therefore, as the characteristic of closeness of the vector a to the set B in the case considered, we
can take

ζ = |ka| <
2Dp

α
<

(

1 +
2D

α

)

p.

The lemma is proved.
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4.2. Independence and dependence exponents of the vectors B
(3)
i (t) on intervals of time.

Each of the functions B
(3)
i , i = 1, k, satisfies the Lipshitz condition on T . The following property is a

consequence of this property.
Let T ⊂ T be a closed interval and let F ⊂ I. Assume that for each t ∈ T , the vectors B

(3)
i (t),

i ∈ F , are linearly independent. Let G⊥({B(3)
i (t)}i∈F ) be the orthogonal complement in R

n to the linear
subspace G({B(3)

i (t)}i∈F ) spanned by the vectors B
(3)
i (t), i ∈ F . Then for any j = 1, k, the projection

of the vector B
(3)
j (t) on the subspace G⊥({B(3)

i (t)}i∈F ) satisfies the Lipschitz condition in t on the closed
interval T .

In turn, this property implies the existence of a lower estimate for the length of the interval on which
the independence of the vectors B

(3)
i (t), i ∈ F , with exponent α decreases up to the independence with

exponent α/2. Let us present the precise statement.

Proposition 4.1. Let F ⊂ I. Then for any α > 0, there exists κ > 0 such that if at a certain instant
t∗ ∈ T , the vectors B

(3)
i (t) are independent with an exponent α, then they are independent with the

exponent α/2 for any t ∈ [t∗ − κ, t∗ + κ] ∩ T .

Analogously, we can formulate an assertion on the existence of a lower estimate of the length of the
interval on which the dependence with an exponent α of the vectors B

(3)
i (t), i ∈ F , can decrease up to

the dependence with the exponent 2α.

Proposition 4.2. Let F ⊂ I. Then for any α > 0, there exists κ > 0 such that if at a certain instant
t∗ ∈ T , the vectors B

(3)
i (t) are dependent with an exponent α, then they are dependent with the exponent

2α for any t ∈ [t∗ − κ, t∗ + κ] ∩ T .

4.3. Rule for choosing the independence and dependence exponents of the vectors B
(3)
i (t).

Let β > 0, ξ > 0, and F ⊂ I.
The independence (dependence) exponent of the vectors B

(3)
i (t), i ∈ F , will be introduced only in the

case where the number q(F ) of elements of the set F does not exceed n. We set the value of the exponent
to be equal to ξq(F ).

At a certain instant of time t∗ ∈ T, let the set of vectors B
(3)
i (t∗), i ∈ F , be independent with exponent

ξq(F ). Then, using Proposition 4.1, we can estimate from below the length of the closed interval [t∗, t] ⊂ T ,
for each instant t such that the independence exponent of the set of vectors B

(3)
i (t), i ∈ F , is not less

than ξq(F )/2. Let w(F, ξ) be such an estimate. Since the total number of sets F with number of elements
varying from 1 to min{k, n} is finite, we can choose the universal estimate

w(ξ) := min
F

w(F, ξ).

We will apply it to any set F .
At a certain instant t∗ ∈ T , let the set B

(3)
i (t∗), i ∈ F , be dependent with exponent ξq(F ). Then using

Proposition 4.2, we can estimate from below the length of the interval [t∗, t̂] ⊂ T for each instant t from
which the dependence exponent of the vectors B

(3)
i (t), i ∈ F , is not greater than 2ξq(F ). Let ŵ(F, ξ) be

such an estimate. By the finiteness of the number of sets F , we can choose the universal estimate
̂̂w(ξ) := min

F
ŵ(F, ξ).

Denote
w(ξ) := min{w(ξ), ̂̂w(ξ)}.

The following property holds: for any F with number of elements q(F ) not exceeding min{k, n}, on
the interval of length w(ξ), we guarantee the independence (dependence) of the vectors B

(3)
i (t), i ∈ F ,

with the exponent ξq(F )/2 (resp. 2ξq(F )) if it was with exponent ξq(F ) at the initial instant of time.
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For k > 1, we only speak about the existence of the estimate w(ξ). In the case k = 1, we can use the
explicit estimate w(ξ) = ξ/(2β).

4.4. Nearness estimate for the chosen exponents.

Lemma 4.2. For a certain instant t∗ ∈ T , let the set of vectors B
(3)
i (t∗), i ∈ F , q(F ) < min{k, n}, be

independent with exponent ξq(F ), where ξ ≤ 1/4. Let us add one more vector B
(3)
j (t∗), j /∈ F . For the

extended set, assume that there is the dependence with exponent ξq(F )+1. Then for any t ∈ [t∗, t∗+w(ξ)]∩T ,
the vector B

(3)
j (t) is close to the set B

(3)
i (t∗), i ∈ F , with exponent ζ = ((1/2) + 8σ)ξ.

Proof. For the set of vectors B
(3)
i (t), i ∈ F , with number of elements q(F ) < min{k, n}, on the closed

interval [t∗, t∗+w(ξ)]∩T , we have the independence with exponent ξq(F )/2. After adding the vector B
(3)
j (t),

j /∈ F , the extended set on the closed interval [t∗, t∗ + w(ξ)] ∩ T is dependent with exponent 2ξq(F )+1.
Let us apply Lemma 4.1. We set

α :=
ξq(F )

2
, p := 2ξq(F )+1.

The inequality p < α follows from ξ ≤ 1/4. By Lemma 4.1, we obtain that for any t ∈ [t∗, t∗ + w(ξ)] ∩ T ,
the vector B

(3)
j (t) is close to the set B

(3)
i (t), i ∈ F , with the exponent

ζ =
(

1 +
2σ

α

)

p =
(

1 +
4σ

ξq(F )

)

2ξq(F )+1 = (2ξq(F ) + 8σ)ξ <

(

2
(

1
4

)q(F )

+ 8σ

)

ξ ≤
(

1
2

+ 8σ

)

ξ.

In the latter inequality, the inequality q(F ) ≥ 1 is taken into account.

5. Application of the Main Lemma

5.1. Weakening of inequality (2.3). For a fixed ξ, we will use estimate (2.3) on closed intervals [t∗, t∗]
of length t∗ − t∗ ≤ w(ξ). The quantity δ in (2.3) is taken from the half-open interval (0, t∗ − t∗]. The set
of subscripts F is assumed to be chosen such that at each instant t ∈ [t∗, t∗], the vectors B

(3)
i (t), i ∈ F ,

are linearly independent with the exponent ξq(F )/2. We set

L := (1/2) + 8σ, ζ̃ := Lξ.

Choose the set H ⊂ I \ F such that H ⊂ H(F, ζ̃, t) for all t ∈ [t∗, t∗]. Therefore, for any j ∈ H and any
t ∈ [t∗, t∗], the vector B

(3)
j (t) is ζ̃-close to the set B

(3)
i (t), i ∈ F . We assume that relations (2.2) hold

for t ∈ [t∗, t∗]. As for the motion y(1∗)(·) of system (1.1) with certain admissible open-loop controls u(·)
and v(·), it is assumed that at instant t∗, it emanates from the point x∗, and for any i ∈ I \ (F ∪ H),
t ∈ [t∗ +ω, t∗], in the case x∗ ∈ Π+(i, t∗), the relation ui(t) = μi holds, whereas in the case x∗ ∈ Π−(i, t∗),
the relation ui(t) = −μi holds.

Let us rewrite estimate (2.3). We have

V(F, t∗ + δ, y(1∗)(t∗ + δ)) ≤ V (2)(t∗, x∗) + λδ2
k∑

i=1

βiμi

+2λLξδ
∑

i∈H

μi + 2λω
∑

i/∈F∪H

σiμi + λχ(t∗, t∗ + δ).
(5.1)

In estimate (5.1), we weaken the third and fourth summands on the right-hand side:

2λLξδ
∑

i∈H

μi ≤ 2λLμξδ, 2λω
∑

i/∈F∪H

σiμi ≤ 2λσμω.
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We obtain the following inequality for any δ ∈ (0, t∗ − t∗]:

V(F, t∗ + δ, y(1∗)(t∗ + δ)) ≤ V (2)(t∗, x∗) + λδ2
k∑

i=1

βiμi

+2λLμξδ + 2λσμω + λχ(t∗, t∗ + δ).

(5.2)

The right-hand side of inequality (5.2) is independent of F . This inequality can be applied in the case
where on the closed interval [t∗, t∗], for i ∈ F , we use arbitrary admissible controls ui(·), and for any
j /∈ F , either on [t∗ + ω, t∗], the regular control uj(·) acts, or for any t ∈ [t∗, t∗], the vector B

(3)
j (t) is

ζ̃-close to the set B
(3)
i (t), i ∈ F . Recall that a control uj(·) is said to be “regular” if for x∗ ∈ Π+(j, t∗)

(x∗ ∈ Π−(j, t∗)), on [t∗ + ω, t∗], the relation uj(t) = μj (uj(t) = −μj) holds.
We restrict the application of inequality (5.2) only to the case where t∗−t∗ ≤ Lξ/β. Then replacing one

factor δ in the second summand on the right-hand side by Lξ/β, instead of (5.2) we obtain the estimate

V(F, t∗ + δ, y(1∗)(t∗ + δ)) ≤ V (2)(t∗, x∗) + 3λLμξδ + 2λσμω + λχ(t∗, t∗ + δ)

or, which is the same,

V(F, t, y(1∗)(t)) ≤ V (2)(t∗, x∗) + kf(ξ)(t − t∗) + 2λσμω + λχ(t∗, t), t ∈ [t∗, t∗], (5.3)

where
kf(ξ) := 3λLμξ.

5.2. Weakening of inequality (2.11). We will apply inequality (2.11), setting ζ = 2ξ. In this case,
in (2.11), we weaken the second and third summands on the right-hand side:

4λξ · (t − t∗)
∑

i∈H

μi ≤ 4λμξ · (t − t∗), 2λω
∑

i/∈H

σiμi ≤ 2λσμω.

Keeping the substitution part of Proposition 2.1 the same, for ζ = 2ξ, we obtain the estimate

V (2)(t, y(1∗)(t)) ≤ V (2)(t∗, x∗) + kf [∗](ξ)(t − t∗) + 2λσμω + λχ(t∗, t), t ∈ [t∗, t∗], (5.4)

where
kf [∗](ξ) := 4λμξ.

6. Choice of ch, Δh, and st[h]

We set

st(ξ,Δ, c) :=
2λσμΔ + c

kf(ξ)
, Δ > 0, c ≥ 0, ξ > 0.

In what follows, we will agree that
ξ ≤ σ

1 + 16σ
.

The following relations hold for such ξ:

ξ < σ, ξ < 1/4, st(ξ,Δ, c) > Δ.

Consider the set of integers h ≥ 1, h ≤ min{k, n}, for each of which there exist a set F ⊂ I with number
q(F ) = h of elements and an instant t ∈ T such that the set of vectors B

(3)
i (t), i ∈ F , is independent with

the exponent ξh. Such a set is nonempty because of the inequality ξ < σ. Denote by h∗(ξ) the maximum
among these numbers.

We assume that the value of ξ is fixed.
1. Choose ch∗(ξ) > 0 and Δh∗(ξ) > 0 such that

st(ξ,Δh∗(ξ), ch∗(ξ)) ≤ min
{
Lξ

β
, w(ξ), ϑ − ϑ1

}

.
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Below, for brevity, we agree to omit the argument ξ when it does not lead to confusion.
2. Let us pass to the choice of ch and Δh for h = h∗ − 1, h∗ − 2, . . . , 1.
Let us describe the step of induction. Let ch > 0 and Δh > 0 be introduced for a certain h ∈ 2, h∗. Let

us define ch−1 and Δh−1.
A. Fix a set Fh of h elements. Choose an arbitrary subset Fh−1 of h − 1 elements and the remaining

set F1 of a single element. Let K(Fh, Fh−1) be the set of instants of time t ∈ T for each of which there
is the ξh-independence of the vectors B

(3)
i (t), i ∈ Fh and, simultaneously, the ξh−1-independence of the

vectors B3
i (t), i ∈ Fh−1.

In the case K(Fh, Fh−1) 	= ∅, to each instant from the set K(Fh, Fh−1), we put in correspondence the
closed interval of length w(ξ) adjacent to it to the right. If the right endpoint of such an interval is
greater than ϑ, we take a closed interval with ϑ as the right endpoint. The union over t ∈ K(Fh, Fh−1)
of these intervals is denoted by K̂(Fh, Fh−1). Note that K̂(Fh, Fh−1) is a closed bounded set. At any
instant t ∈ K̂(Fh, Fh−1), we have the ξh/2-independence of the vectors B

(3)
i (t), i ∈ Fh, and the ξh−1/2-

independence of the vectors B
(3)
i (t), i ∈ Fh−1. Also, we have the ξh/2-independence of the vectors B

(3)
i (t),

i ∈ F1.
In the case K(Fh, Fh−1) = ∅, we do not take into account the pair Fh, Fh−1 for the definition of ch−1

and Δh−1. Below, we will assume that K(Fh, Fh−1) 	= ∅.
Using Lemma 3.3, we choose c	 ∈ (0, ch] so that, uniformly in t ∈ K̂(Fh, Fh−1), the sets Πc�(Fh−1, t)

and Πc�(F1, t) outside the set int Πch(Fh, t) are distant from each other by a finite distance in the limits
of a certain bounded set X∗ ⊂ R

n estimated from above by the set of states at which motions of system
(1.1) emanating from the set Y can lie.

Let b(ξ, Fh, Fh−1, ch, c), where c ∈ (0, c	], be a uniform (in t ∈ K̂(Fh, Fh−1)) lower estimate of the
transition time of system (1.1) from the set Πc(Fh−1, t)∩X∗ to the set Πc(F1, t), t ∈ (t, t+w(ξ)]∩T , if at
the initial instant t, the system was on (Πc(Fh−1, t) ∩ X∗) \ int Πch(Fh, t). Such an estimate exists by the
property that the set Πc(F1, t) is continuously varied in t, which was proved in Lemma 3.2. Obviously,
the dependence c �→ b(ξ, Fh, Fh−1, ch, c) can be chosen to be nonincreasing. For example, we can take
b(ξ, Fh, Fh−1, ch, c) = b(ξ, Fh, Fh−1, ch, c	), c ∈ (0, c	].

Choose positive c
 ≤ c	 and Δ
 ≤ Δh such that

st(ξ,Δ
, c
) ≤ b(ξ, Fh, Fh−1, ch, c
).

As a result, we obtain c
 and Δ
 for given Fh and Fh−1. To stress the dependence of the chosen quantities
on ξ, Fh, Fh−1, ch, and Δh, we will write c
(ξ, Fh, Fh−1, ch, Δh) and Δ
(ξ, Fh, Fh−1, ch, Δh).

B. Now we look over all sets Fh of h elements, and for each of them we look over all the sets Fh−1 of
h − 1 elements (with the condition K(Fh, Fh−1) 	= ∅ holding). We set

ch−1 := min
(Fh,Fh−1)

c
(ξ, Fh, Fh−1, ch, Δh), Δh−1 := min
(Fh,Fh−1)

Δ
(ξ, Fh, Fh−1, ch, Δh).

If, for all variants of Fh and Fh−1, we have K(Fh, Fh−1) = ∅, then we set ch−1 = ch and Δh−1 = Δh.
Denote

st[h] := st(ξ,Δh, ch), h = 1, h∗.

The quantity st[h] depends on ξ. For brevity, we omit the bracket of the argument.

7. Loops along the Motion

Therefore, for a given ξ, we have introduced the quantities ch, Δh, and st[h], h = 1, h∗.
Consider the motion y(1)(·) of system (1.1) from the position (t0, x0) ∈ Y, t0 < ϑ, according to a certain

strategy U ∈ Uc1 of the first player with a step Δ ≤ Δ1 and according to a certain open-loop control v(·)
of the second player.
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By the symbol H we denote the set of integers h ∈ 1, h∗, for each of which there exist a set F ⊂ I with
number of elements q(F ) = h and an instant t ∈ [t0, ϑ] such that y(1)(t) ∈ Πch(F, t) and the set of vectors
B

(3)
i (t), i ∈ F , is independent with exponent ξh.
If H = ∅, then we agree that the whole interval [t0, ϑ] is a free interval of level 1.
Assume that H 	= ∅. Let h
 be the maximum among the set of numbers in H.
Along the motion y(1)(·), we distinguish “loops,” which are connected to the entrance to the sets

Πch(F, t), where q(F ) = h, h = 1, h
. Also, we define free intervals.
Let T[h] be the set of instants t ∈ [t0, ϑ] such that y(1)(t) ∈ Πch(F, t) for a certain set F with q(F ) = h,

and, moreover, the vectors B
(3)
i (t), i ∈ F , are independent with exponent ξh. The mentioned F is not

necessarily unique. The collection of sets F corresponding to the instant t is denoted by {F [h](t)}.
If h
 < h∗, then we assume that [t0, ϑ] is a free interval of level h
 + 1.
1. Let h = h
.
A. Let us agree that

τ
[h�]
1 := min

{
t : t ∈ T[h�]

}
,

τ
[h�]
i+1 := min

{
t : t ∈ T[h�] ∩ [τ [h�]

i + st[h�], ϑ]
}

, i = 1, 2, . . . .

The obtained set of instants τ
[h�]
i is denoted by {τ [h�]}.

To each instant τ
[h�]
i ∈ {τ [h�]}, we put in correspondence a series of loops. We set t

[h�]
i,1 := τ

[h�]
i . The

instant t
[h�]
i,1 is called the instant of the origin for the first loop (in the series i) of level h
. Choose an

arbitrary F ∈ {F [h�](t[h
�]

i,1 )}. We define the instant t
[h�]
i,1+ of the end of the first loop as follows:

t
[h�]
i,1+ := max

{
t : y(1)(t) ∈ Πc

h� (F, t), t ∈ [t[h
�]

i,1 , τ
[h�]
i + st[h�]] ∩ [t0, ϑ]

}
.

We do not verify the independence property of the vectors B
(3)
i (t), i ∈ F , with exponent ξh�

. In particular,

the instant t
[h�]
i,1+ can coincide with t

[h�]
i,1 .

As the instant t
[h�]
i,2 of the origin of the second loop (in the series i) of level h
, we take

t
[h�]
i,2 := min

{
t : t ∈ T[h�] ∩ [t[h

�]
i,1+, τ

[h�]
i + st[h�]]

}
.

Choose an arbitrary F ∈ {F [h�](t[h
�]

i,2 )}. Define the instant t
[h�]
i,2+ of the end of the second loop:

t
[h�]
i,2+ := max

{
t : y(1)(t) ∈ Πc

h� (F, t), t ∈ [t[h
�]

i,2 , τ
[h�]
i + st[h�]] ∩ [t0, ϑ]

}
.

Continuing this process, we obtain the series of loops of level h
 corresponding to the instant τ
[h�]
i . The

number of loops in the series does not exceed Ch�

k .
Enumerate the loops of level h
 in through numbering. The set of instants of origins of loops of level

h
 is denoted by {t[h�]}.
B. Remove the intervals of the constructed loops from the closed interval [t0, ϑ]. We obtain an ordered

set of intervals. Each of them can be closed and is called a free interval of level h
. The origin of the first
free interval can coincide with t0, and the endpoint of the last free interval can coincide with ϑ. Let Θ[h�]

j

be the notation of the free interval with the number j in the through numbering.
2. Now we pass to levels h
 − 1, h
 − 2, . . . , 1. Let us describe a step of induction.
Assume that the loops and free intervals corresponding to a certain level h ∈ 2, h
 are already defined.

Let Θ[h]
j := [θ[h]

j , θ
[h]
j+] be the notation of the free interval with the number j in the through numbering on

[t0, ϑ].
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A. Consider a free interval Θ[h]
j . Let us agree that

τ
[h−1]
j,1 := min

{
t : t ∈ T[h−1] ∩ Θ[h]

j

}
,

τ
[h−1]
j,i+1 := min

{
t : t ∈ T[h−1] ∩ [τ [h−1]

j,i + st[h−1], ϑ
[h]
j+]
}
, i = 1, 2, . . . .

The obtained set of instants τ
[h−1]
j,i is denoted by {τ [h−1]

j }.
To each instant τ

[h−1]
j,i ∈ {τ [h−1]

j }, we put in correspondence a series of loops. We set t
[h−1]
j,i,1 := τ

[h−1]
j,i .

An instant t
[h−1]
j,i,1 is called the instant of origin of the first loop (in the series i) of level h − 1 on the free

interval Θ[h]
j . Choose an arbitrary F ∈ {F [h−1](t[h−1]

j,i,1 )}. Define the instant t
[h−1]
j,i,1+ of the end of the first

loop as follows:

t
[h−1]
j,i,1+ := max

{
t : y(1)(t) ∈ Πch−1(F, t), t ∈ [t[h−1]

j,i,1 , τ
[h−1]
j,i + st[h−1]] ∩ Θ[h]

j

}
.

In particular, the instant t
[h−1]
j,i,1+ can coincide with t

[h−1]
j,i,1 . Further, we find the instant t

[h−1]
j,i,2 ∈

[t[h−1]
j,i,1+, τ

[h−1]
j,i + st[h−1]] ∩ Θ[h]

j , and so on.

B. Define free intervals of level h−1 on Θ[h]
j . For this purpose, we remove the intervals of the constructed

loops of level h − 1 constructed on the closed interval Θ[h]
j from it. Each of the remaining intervals can

be closed and is called a free interval. The origin of the first free interval can coincide with θ
[h]
j , and the

endpoint of the last free interval can coincide with θ
[h]
j+.

C. Using the method described, we introduce loops of level h − 1 and free intervals of level h − 1 on
each free interval Θ[h]

j of level h.

Perform through enumeration of instants τ
[h−1]
j,i , running through all values of the subscripts j and i.

The obtained set of instants is denoted by {τ [h−1]}.
Also, in the through numbering, we enumerate the instants of origin of the loops of level h− 1. Denote

such a set by {t[h−1]}. Introduce the through numbering of free intervals. Let Θ[h−1]
j := [θ[h−1]

j , θ
[h−1]
j+ ] be

the notation of the free interval with the number j.
Note that the free intervals on the level h− 1 can be defined as a result of the removal of all the loops

of levels h
, h
 − 1, . . . , h − 1 from [t0, ϑ] and the subsequent closing each of the obtained intervals.
If there are no loops on the level h − 1, then going around the level h − 1, we pass to the formation

of loops on the level h − 2. In this case, we assume that free intervals of level h − 1 coincide with free
intervals of level h.

8. Proof of Theorem 1 for β > 0

In Sec. 7, for a fixed ξ, to a motion y(1)(·), we have put in correspondence loops and free intervals of
levels 1, 2, . . . , h
. The set of instants of origin of the loops of level h was denoted by {t[h]}.

To write the variation of the function V (2) along the motion y(1)(·) on the interval [t∗, t∗], we introduce
the notation

Var(V (2), [t∗, t∗]) := V (2)(t∗, y(1)(t∗)) − V (2)(t∗, y(1)(t∗)).
We set

sh[∗] := 2λσμΔ; sh[h] := 2λσμΔ + ch, h = 1, h
.

The quantity sh[∗] depends on Δ, and the quantity sh[h] depends on ξ and Δ, but we omit the brackets
of arguments.

From the definition of st[h] and sh[h] and the condition Δ ≤ Δh, the following relation follows:

sh[h] ≤ st[h] · kf , h = 1, h
.
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Further, let
kf [0] := max{kf ,kf [∗]}; kf [h] := e(h, k)kf [0], h = 1, h
,

where
e(1, k) := 2C1

k + 1, e(h, k) := e(h − 1, k) + Ch
k (1 + e(h − 1, k)), h = 2, h
.

Note that

sh[∗] < sh[1]; sh[h−1] ≤ sh[h], h = 2, h
,

kf [0] < kf [1]; kf [h−1] < kf [h], h = 2, h
.

8.1. Increment of the function V (2) on loops of level h. Let us explain the application of inequality
(5.3), which follows from the main Lemma 2.1, in order to estimate the variation of the function V (2)

along the motion y(1)(·) on loops of level h.
Any instant t

[h]
j from {t[h]} is the instant of origin of a loop of the hth level, the instant of the end of a

loop is denoted by t
[h]
j+, and, moreover, t

[h]
j+− t

[h]
j ≤ st[h]. To each loop of level h, we put in correspondence

a completely definite set F of subscripts with number of elements q(F ) = h. At the instant t
[h]
j , we have

the ξh-independence of the vectors B
(3)
i (t[h]

j ), i ∈ F . On the interval [t[h]
j , t

[h]
j+], the independence with

exponent ξh can decrease only to the independence with exponent ξh/2.
To apply inequality (5.3) for estimating the value of V(F, t

[h]
j+, y(1)(t[h]

j+)), using Lemma 4.2 we define the

set H(F,Lξ) consisting of subscripts g 	∈ F of the vectors B
(3)
g (t) that are close with the characteristic Lξ,

L = (1/2) + 8σ, to the set of vectors B
(3)
i (t), i ∈ F , for all t on the interval [t[h]

j , t
[h]
j+]. Taking an element

g 	∈ F , we include it in the set H(F,Lξ) if, at the instant of time t
[h]
j , there is the ξh+1-dependence of the

vectors B
(3)
i (t[h]

j ), i ∈ F ∪ g.

Let g 	∈ F , g 	∈ H(F,Lξ). For these elements, we have the ξh+1-independence of the vectors B
(3)
i (t[h]

j ),
i ∈ F ∪ g. In this case, we take into account that, by the definitions of the sets {t[h+1]} and {t[h]}, the
instant t

[h]
j belongs to a certain free interval of level h + 1. In the interior of this interval, there are no

loops of level h + 1. Therefore,
y(1)(t[h]

j ) 	∈ int Πch+1(F ∪ g, t
[h]
j ).

Since t
[h]
j+ − t

[h]
j ≤ st[h], it follows that on [t[h]

j , t
[h]
j+], we have the independence of the vectors B

(3)
i (t),

i ∈ F ∪g, with exponent ξh+1/2. Hence, using the rule for choosing the numbers ch+1, ch, and c1 described
in Sec. 6 and based on Lemma 3.3, we can speak about a uniform lower estimate of the distance between
the sets (Πch(F, t)∩X∗) \ int Πch+1(F ∪ g, t) and Πc1(g, t) for instants t ∈ T , at which the vectors B

(3)
i (t),

i ∈ F ∪ g, are independent with exponent ξh+1/2. Therefore, the distance between the point y(1)(t[h]
j )

and the set Πc1(g, t
[h]
j ) also satisfies this estimate. According to the choice of st[h], the motion of system

(1.1) emanating from the point y(1)(t[h]
j ) at the instant t

[h]
j cannot attain the set Πc1(g, t), continuously

varying on the interval [t[h]
j , t

[h]
j+] by Lemma 3.2.

Moreover, on [t[h]
j , t

[h]
j+], along the motion y(1)(·), the regular control ug(·) is realized everywhere, prob-

ably, except for a certain initial interval adjacent to the instant t
[h]
j whose length does not exceed the step

Δ ≤ Δ1 of the discrete scheme.
Therefore, on the interval [t[h]

j , t
[h]
j+], we can apply the main Lemma 2.1 and the inequalities that follow

from it. In this case, we set ω = Δ.
Using inequality (5.3), we write the upper estimate of V(F, t

[h]
j+, y(1)(t[h]

j+)):

V(F, t
[h]
j+, y(1)(t[h]

j+)) ≤ V (2)(t[h]
j , y(1)(t[h]

j )) + kf · (t[h]
j+ − t

[h]
j ) + 2λσμΔ + λχ(t[h]

j , t
[h]
j+).
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Since y(1)(t[h]
j+) ∈ Πch(F, t

[h]
j+), we have the following inequality for the function V (2):

V (2)(t[h]
j+, y(1)(t[h]

j+)) ≤ V(F, t
[h]
j+, y(1)(t[h]

j+)) + ch.

Therefore,
Var(V (2), [t[h]

j , t
[h]
j+]) ≤ kf · (t[h]

j+ − t
[h]
j ) + 2λσμΔ + ch + λχ(t[h]

j , t
[h]
j+).

Taking into account that sh[h] = 2λσμΔ + ch, we obtain

Var(V (2), [t[h]
j , t

[h]
j+]) ≤ kf · (t[h]

j+ − t
[h]
j ) + sh[h] + λχ(t[h]

j , t
[h]
j+). (8.1)

8.2. Auxiliary intervals. Let us define variants of intervals of time using which we will estimate the
variation of the function V (2) along the motion y(1)(·).

Let us agree that each of the subscripts h and p assumes the values 1, 2, . . . , h
. Let
E[h] be the interval [ρ, η] such that it contains at least one instant from the set {τ [h]}; on [ρ, η), there

are no points of the sets {t[p]}, p > h;
E[h] is the interval [ρ, η] such that ρ ∈ {τ [h]}; on [ρ, η]\ [ρ, ρ+ st[h]], there are no points of the set {τ [h]};

on [ρ, η), there are no points of the sets {t[p]}, p > h;
E [h] is the interval [ρ, η] of the form E[h] satisfying the additional condition ρ + st[h] ≤ η.
We denote by D the interval [ρ, η] if it is one of the free intervals of level 1. On (ρ, η), there are

no instants from {t[p]}, p ≥ 1. This follows from the fact that free intervals of level 1 are obtained by
removing all loops of levels h
, h
 − 1, . . . , 1, from the closed interval [t,0 , ϑ] and by subsequently closing
each of the remaining intervals.

On each interval of the form E[h] or E [h], there is at least one instant of the set {t[h]}. Also, there can
be instants of the sets {t[p]}, p < h.

All initial instants of h-loops, h = 1, h
, that lie in a concrete interval E[h] are on an interval of length
no more than st[h]. Moreover, on such an interval, for each F with q(F ) = h, there can be no more
than one instant of the loop origin. Therefore, the total number of h-loops on E[h] does not exceed Ch

k .
Also, note that the intervals of h-loops lying in E[h] are disjoint. Hence we can perform an independent
summation of estimate (8.1) over h-loop intervals lying in E[h], and we know the estimate of the number
of loops.

8.3. Increment of the function V (2) on auxiliary intervals. Let us estimate the variation of the
function V (2) on auxiliary intervals.

We begin with the interval [ρ, η] of the form D. We note the following properties:
— if on (ρ, η), there are entrances to the sets Πc1(i, t), i = 1, k, then at each such instant, we have the

inequality |B(3)
i (t)| < ξ;

— a possible increase in the function V (2) due to “irregular” controls at one step of the discrete scheme
is estimated from above by sh[∗] by virtue of Proposition 2.2.

Lemma 8.1. The increment of the function V (2) on the interval [ρ, η] of the form D is described by the
inequality

VarD(V (2), [ρ, η]) ≤ kf [∗] · (η − ρ) + sh[∗] + λχ(ρ, η). (8.2)

Proof. Note that
Δ ≤ Δ1 ≤ w(ξ) ≤ ξ/(2β).

Choose δ := ξ/(2β). Then for time δ, the quantity |B(3)
i (t)|, i = 1, k, cannot change more than ξ/2.

Moving from left to right, we divide the interval [ρ, η] with step δ (the last of the obtained intervals can
be of length less than δ). Let us show that we can apply Proposition 2.1 with estimate (5.4) to each of
the δ-intervals.
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Indeed, let [t, t̃] be an arbitrary interval from the δ-intervals. By the choice of the number δ, we obtain
that for any i ∈ 1, k, either |B(3)

i (t)| ≤ 2ξ for all t ∈ [t, t̃] or |B(3)
i (t)| ≥ 3ξ/2 also for all t ∈ [t, t̃].

In the first case, we include i in the set H of small subscripts of values of |B(3)
i (t)|.

Let i /∈ H. If t > ρ + Δ, then the control ui(·) is regular on [t, t̃]. Indeed, on [t − Δ, t̃], we have
|B(3)

i (t)| ≥ ξ. Moreover, on [t − Δ, t̃], there are no instants from the set {t[1]}, since they are absent
on [ρ, η]. Hence, on [t − Δ, t̃], the motion y(1)(t) is executed to one side of Πc1(i, t), and, moreover, on
[t−Δ, t], there is an instant of the discrete scheme. This implies that ui(·) is regular on [t, t̃]. If t ≤ ρ+Δ,
then, in advance, the regular control ui(·) acts on [ρ + Δ, t̃], and an arbitrary control ui(·) can act only
on [t, min{ρ + Δ, t̃}].

Therefore, on the interval [t, t̃], the assumptions of Proposition 2.1 hold. Moreover, in estimate (5.4),
we set ω = 0 in the case t > ρ + Δ and ω = min{ρ + Δ, t̃} − t ≤ ρ + Δ − t for t ≤ ρ + Δ.

Let us sum up estimate (5.4) over the δ-intervals. We take into account that the total number of
δ-intervals for each of which H 	= ∅ does not exceed η − ρ. Also, we take into account that the instant t

at which |B(3)
i (t)| ≥ ξ, for an arbitrary control ui(t), i ∈ 1, k, can be only on the initial part of the interval

[ρ, η], more precisely, on [ρ, ρ + Δ]. As a result, we obtain estimate (8.2).

We now pass to the estimation of the increment of the function V (2) on the closed intervals of the form
E[h], E [h], E[h], where h = 1, h
.

Lemma 8.2. The increment of the function V (2) on intervals of the form E[h], E [h], and E[h] is described
by the following inequalities for any h = 1, h
:

Var
E[h]

(V (2), [ρ, η]) ≤ kf [h−1] · (η − ρ) + e(h, k)sh[h] + λχ(ρ, η),

Var
E[h]

(V (2), [ρ, η]) ≤ kf [h] · (η − ρ) + λχ(ρ, η),

Var
E[h]

(V (2), [ρ, η]) ≤ kf [h] · (η − ρ) + e(h, k)sh[h] + λχ(ρ, η).

Proof. 1. Let h = 1. Using (8.1), we have

Var
E[1]

(V (2), [ρ, η]) ≤ kf · |T [1]| + C1
ksh

[1] + λχ(T [1]) + Var(V (2), [ρ, η] \ T [1]).

Here, T [1] is a subset of the interval [ρ, η] filled in by loops of level 1; |T [1]| is the ordinary length of the
set T [1]; C1

k is the upper estimate of the number of loops of level 1 on [ρ, η]; χ(T [1]) is the interval of the
form (1.9) but calculated on the set T [1]; the summand Var(V (2), [ρ, η] \ T [1]) estimates the increment of
the function V (2) on the set [ρ, η] \ T [1].

The set [ρ, η] \ T [1] is the set of intervals of the closed interval [ρ, η] outside the loops of level 1. There
are no more than C1

k such intervals, and the closure of each of these intervals is an interval of the form
D. Therefore, we can use estimate (8.2). We obtain

Var
E[1]

(V (2), [ρ, η]) ≤ kf · |T [1]| + C1
ksh

[1] + kf [∗] · ((η − ρ) − |T [1]|) + C1
ksh

[∗] + λχ(ρ, η)

≤ kf [0] · (η − ρ) + 2C1
ksh

[1] + λχ(ρ, η).

Let us estimate Var
E[1]

(V (2), [ρ, η]). We take into account the relation sh[1] ≤ st[1] ·kf . By the definition
of the set of the form E [1], we have st[1] ≤ η − ρ. Therefore,

sh[1] ≤ kf · (η − ρ).

Thus,

VarE [1](V (2), [ρ, η]) = VarE[1](V (2), [ρ, η]) ≤ kf [0] · (η − ρ) + 2C1
ksh

[1] + λχ(ρ, η)

≤ kf [0] · (η − ρ) + 2C1
k(η − ρ)kf + λχ(ρ, η)

≤ (2C1
k + 1)kf [0] · (η − ρ) + λχ(ρ, η) = kf [1] · (η − ρ) + λχ(ρ, η).
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Now let us consider the interval [ρ, η] of the form E[1]. We can represent it as an interval composed of
the initial interval [ρ, t#] of the form D, finitely many intervals of the form E [1] following each other up
to a certain instant t♦ (their total interval is [t#, t♦]), and the remaining interval [t♦, η] of the form E[1].
Therefore,

VarE[1](V (2), [ρ, η]) ≤ VarD(V (2), [ρ, t#]) + kf [1] · (t♦ − t#) + λχ(t#, t♦) + VarE[1](V (2), [t♦, η])

≤ kf [∗] · (t# − ρ) + sh[∗] + kf [1] · (t♦ − t#) + kf [0] · (η − t♦) + 2C1
ksh

[1] + λχ(ρ, η)

≤ kf [1] · (η − ρ) + (2C1
k + 1)sh[1] + λχ(ρ, η).

2. Let us pass to the estimation of the increment V (2) on intervals of the form E[h], E [h], and E[h] for
h ∈ 2, h
. We prove the required inequalities by induction.

Assume that for intervals of the form E[p], the following estimate of the increment of the function V (2)

is obtained for p ≥ 1, p ≤ h < h
:

VarE[p](V (2), [ρ, η]) ≤ kf [p] · (η − ρ) + e(p, k)sh[p] + λχ(ρ, η). (8.3)

For the interval of the form E[h+1], using (8.1) we have

VarE[h+1](V (2), [ρ, η]) ≤ kf · |T [h+1]| + Ch+1
k sh[h+1] + λχ(T [h+1]) + Var(V (2), [ρ, η] \ T [h+1]),

where T [h+1] is a subset of the interval [ρ, η] filled in by loops of level h + 1; |T [h+1]| is the length of the
set T [h+1]; Ch+1

k is the upper estimate of the number of loops of level h + 1 on [ρ, η]; χ(T [h+1]) is the
integral of the form (1.9) but calculated over the set T [h+1]; Var(V (2), [ρ, η] \ T [h+1]) is the increment of
the function V (2) on the set [ρ, η] \ T [h+1].

The set [ρ, η] \ T [h+1] is the set of intervals of the closed interval [ρ, η] outside the loops of level h + 1.
There are no more than Ch+1

k such intervals, the closure of each of which is an interval of the form D or
E[p], where p ≤ h. Therefore, we can use estimates (8.2) and (8.3). We obtain

VarE[h+1](V (2), [ρ, η]) ≤ kf · |T [h+1]| + Ch+1
k sh[h+1]

+kf [h] · ((η − ρ) − |T [h+1]|) + Ch+1
k e(h, k)sh[h] + λχ(ρ, η)

≤ kf [h] · (η − ρ) + Ch+1
k (1 + e(h, k))sh[h+1] + λχ(ρ, η).

Let us estimate Var
E[h+1]

(V (2), [ρ, η]). We take into account the relation sh[h+1] ≤ st[h+1] · kf . By the
definition of the set of the form E [h+1], we have st[h+1] ≤ η − ρ. Therefore,

sh[h+1] ≤ kf · (η − ρ).

Thus,

VarE [h+1](V (2), [ρ, η]) = VarE[h+1](V (2), [ρ, η])

≤ kf [h] · (η − ρ) + Ch+1
k (1 + e(h, k))sh[h+1] + λχ(ρ, η)

≤ kf [h] · (η − ρ) + Ch+1
k (1 + e(h, k))(η − ρ)kf + λχ(ρ, η)

≤ e(h, k)kf [0] · (η − ρ) + Ch+1
k (1 + e(h, k))kf [0] · (η − ρ) + λχ(ρ, η).

Since
kf [h+1] = (e(h, k) + Ch+1

k (1 + e(h, k)))kf [0],

it follows that
VarE [h+1](V (2), [ρ, η]) ≤ kf [h+1] · (η − ρ) + λχ(ρ, η).

Now let us consider the interval [ρ, η] of the form E[h+1]. It can be represented as an interval composed
of the initial interval [ρ, t#] of the form E[h], finitely many intervals of the form E [h+1] following each
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other up to a certain instant t♦ (its total interval is [ρ, t♦]), and the remaining interval [t♦, η] of the form
E[h+1]. Therefore,

VarE[h+1](V (2), [ρ, η]) ≤ VarE[h](V (2), [ρ, t#]) + kf [h+1] · (t♦ − ρ)

+λχ(ρ, t♦) + VarE[h+1](V (2), [t♦, η])

≤ kf [h] · (t# − ρ) + e(h, k)sh[h] + kf [h+1] · (t♦ − ρ) + kf [h] · (η − t♦)

+Ch+1
k (1 + e(h, k))sh[h+1] + λχ(ρ, η)

≤ kf [h+1] · (η − ρ) + [e(h, k) + Ch+1
k (1 + e(h, k))]sh[h+1] + λχ(ρ, η).

As a result,

Var
E[h+1]

(V (2), [ρ, η]) ≤ kf [h+1] · (η − ρ) + e(h + 1, k)sh[h+1] + λχ(ρ, η).

The lemma is proved.

8.4. Increment of the function V (2) on the whole interval of the game. Recall that h
 is the
maximum number of h-loops along the motion y(1)(·) on the whole interval [t0, ϑ]. Since [t0, ϑ] is an
interval of the form E[h�], we can write the following estimate for Var

E[h�]
(V (2), [t0, ϑ]):

Var
E[h�]

(V (2), [t0, ϑ]) ≤ kf [h�] · (ϑ − t0) + e(h
, k)sh[h�] + λχ(t0, ϑ).

We have st[h�] ≤ ϑ − ϑ1. Therefore,

sh[h�] ≤ st[h�] · kf ≤ kf · (ϑ − ϑ1).

Hence

Var
E[h�](V

(2), [t0, ϑ]) ≤ e(h
, k)kf [0] · (ϑ − t0) + e(h
, k)kf · (ϑ − ϑ1) + λχ(t0, ϑ)

≤ 2e(h
, k)kf [0] · (ϑ − ϑ1) + λχ(t0, ϑ).

Weakening e(h
, k) through e(k, k), we finally obtain

Var
E[h�](V

(2), [t0, ϑ]) ≤ 2e(k, k)kf [0] · (ϑ − ϑ1) + λχ(t0, ϑ).

Replacing Var
E[h�]

(V (2), [t0, ϑ]) by V (2)(ϑ, y(1)(ϑ)) − V (2)(t0, x0) and taking into account that

γ(2)(y(1)(ϑ)) = V (2)(ϑ, y(1)(ϑ)), we have

γ(2)(y(1)(ϑ)) ≤ V (2)(t0, x0) + 2e(k, k)kf [0] · (ϑ − ϑ1) + λχ(t0, ϑ).

Since kf [0] is the maximum of the quantities

kf = 3λLμξ = 3λ((1/2) + 8σ)μξ, kf [∗] = 4λμξ,

it follows that kf [0] can be estimated from above by 3λ((3/2) + 8σ)μξ. Therefore,

γ(2)(y(1)(ϑ)) < V (2)(t0, x0) + 3e(k, k)λ(3 + 16σ)μξ · (ϑ − ϑ1) + λχ(t0, ϑ). (8.4)

Taking into account the distinction between the cost functions γ(1) and γ(2), by (8.4) we obtain

γ(1)(y(1)(ϑ)) < V (2)(t0, x0) + 3e(k, k)λ(3 + 16σ)μξ · (ϑ − ϑ1) + λχ(t0, ϑ) + ‖γ(1) − γ(2)‖M , (8.5)

where
e(k, k) = Ck

k + (Ck
k + 1)[Ck−1

k + (Ck−1
k + 1)[. . . [C1

k + (C1
k + 1)] . . . ]].
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8.5. Final estimate. In deducing estimate (8.5), we assume that the value of ξ is fixed. According to
ξ, we find c1 and Δ1. The quantity c1 determines the sets Πc1(i, t), i = 1, k, t ∈ [t0, ϑ], using which the
multivalued function Uc1 is defined. Its single-valued selection U is used as a strategy of the first player.
The strategy U applies in the discrete control scheme with the step Δ ≤ Δ1. For chosen U and Δ, the
motion y(1)(·) corresponds to a certain initial position (t0, x0) ∈ Y and a certain control v(·) of the second
player.

By the choice of the number ξ, we can make the second summand of the right-hand side of (8.5)
arbitrarily small.

The following assertion holds.

Lemma 8.3. Let a number ε > 0 be given. Choose ξ(ε) ∈ (0, σ/(1 + 16σ)] such that the following
inequality holds:

3e(k, k)λ(3 + 16σ)μξ(ε)(ϑ − ϑ1) ≤ ε.

Further, according to the chosen ξ(ε), define the number c(ε) = c1(ξ(ε)) and the constraint Δ(ε) =
Δ1(ξ(ε)) on the step of the discrete control scheme according to the rule of Sec 6. Let the first player
apply an arbitrary strategy U with the step Δ ≤ Δ(ε), and let this strategy be a single-valued selection of
the multivalued function Uc(ε) constructed by using the sets Πc(ε)(i, t), i = 1, k, t ∈ T . Then to any initial
position (t0, x0) ∈ Y, the first player guarantees the result

Γ(1)(t0, x0, U, Δ) ≤ V (2)(t0, x0) + ε + λχ(t0, ϑ) + ‖γ(1) − γ(2)‖M .

In Lemma 8.3, we consider the strategies defined by using c-neighborhoods of the switching surfaces
Π(i, t). To formulate the result connected with geometric r-neighborhoods, we define the number

r(ε) := c(ε)/λ.

Then Πr(ε)(i, t) ⊂ Πc(ε)(i, t) for i = 1, k, t ∈ T . Hence, for any strategy U embedded in Ur(ε) and for any
(t0, x0) ∈ Y, Δ ≤ Δ(ε), the following inequality holds:

Γ(1)(t0, x0, U, Δ) ≤ V (2)(t0, x0) + ε + λχ(t0, ϑ) + ‖γ(1) − γ(2)‖M ,

which means the assertion of Theorem 1.

Remark. In the formulation of Lemma 8.3, we speak about the choice of c(ε) and Δ(ε) by using the rule
of Sec. 6. Such a choice uses the continuous variations of the sets Πc(i, t), i = 1, k, and is not constructive.
For an effective determination of c(ε) and Δ(ε), we additionally need the characteristics of the velocity of
variations in t of such sets.

9. Proof of Theorem 1 for β = 0

9.1. Analogs of inequalities (5.2) and (5.4). In the case β = 0, the functions t → B
(3)
i (t), i ∈ I,

are constant; denote the corresponding constants by b
(3)
i . For any set F ⊂ I, the vectors b

(3)
i are either

linearly dependent or linearly independent.
Choose the parameter ξ̂ such that for any set F , the linear independence of the vectors b

(3)
i , i ∈ F ,

means the linear independence with the exponent ζ̂ := ξ̂q(F )/2.
Let F ⊂ I be a certain set with linearly independent vectors b

(3)
i , i ∈ F . If ζ ≤ ζ̂ and the vector b

(3)
j ,

j ∈ I \ F , is ζ-close to the set b
(3)
i , i ∈ F , then b

(3)
j ∈ G({b(3)

i }i∈F ). Therefore, the set H(F, ζ, t) is the
same for all ζ ≤ ζ̂ and all t ∈ T .

For an arbitrary number ξ ≤ ξ̂ and a set H ⊂ H(F, ζ, t), ζ = ξq(F )/2, we write inequality (5.1) for
β = 0. Let us pass to the limit as ξ → 0. Instead of inequality (5.1), we obtain the inequality

V(F, t∗ + δ, y(1∗)(t∗ + δ)) ≤ V (2)(t∗, x∗) + 2λω
∑

i/∈F∪H

σiμi + λχ(t∗, t∗ + δ).
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Using the relation
2λω

∑

i/∈F∪H

σiμi ≤ 2λσμω,

we arrive at the inequality

V(F, t∗ + δ, y(1∗)(t∗ + δ)) ≤ V (2)(t∗, x∗) + 2λσμω + λχ(t∗, t∗ + δ), (9.1)

which replaces inequality (5.2) for β = 0.
An analog of inequality (5.4) is the inequality

V (2)(t, y(1∗)(t)) ≤ V (2)(t∗, x∗) + 2λσμω + λχ(t∗, t), t ∈ [t∗, t∗]. (9.2)

9.2. Choice of quantities ch and st[h]. We denote by h∗ the maximum number of linearly independent
vectors b3

i , i ∈ I.
Define an arbitrary ch∗ > 0. We set st[h∗] := ϑ − ϑ1.
Let the quantities ch > 0 and st[h] be introduced for a certain h ∈ 2, h∗. We define the quantities ch−1

and st[h−1].
Fix a set Fh ⊂ I of h elements such that the vectors b

(3)
i , i ∈ Fh, are linearly independent. Distinguish

an arbitrary subset Fh−1 of h−1 elements and the remaining subset F1 of a single element. Using Lemma
3.3, we choose c	 ∈ (0, ch] such that uniformly in t ∈ T the sets Πc�(Fh−1, t) and Πc�(F1, t) outside the set
int Πch(Fh, t) are distant from each other by a finite distance in the limits of a bounded set X∗ ⊂ R

n, which
is an upper estimate of the set of states at which there can be the motions of system (1.1) emanating
from the set Y. The quantity c	 depends on the choice of Fh and Fh−1 and on the value of ch, i.e.,
c	 = c	(Fh, Fh−1, ch).

Let b(Fh, Fh−1, ch, c	) be a uniform in t ∈ T lower estimate of the transition time of system (1.1) from
the set Πc�(Fh−1, t) ∩ X∗ to the set Πc�(F1, t), t ∈ (t, ϑ] in the case where, at the initial instant t, the
system is on (Πc�(Fh−1, t)∩X∗)\ int Πch(Fh, t). Such an estimate can be obtained by using the continuity
property of the variation in t of the set Πc�(F1, t), which follows from Lemma 3.2.

Now we look over all sets Fh of h elements such that the vectors b
(3)
i , i ∈ Fh, are linearly independent.

For each such set, we consider all variants of partition of the set Fh into a set Fh−1 of h− 1 elements and
a singleton F1. Let

ch−1 := min
(Fh,Fh−1)

c	(Fh, Fh−1, ch), st[h−1] := min
(Fh,Fh−1)

{st[h], b(Fh, Fh−1, ch, c	)}.

Note that for β = 0, sequentially introducing the quantities ch, we do not define the quantities Δh in
parallel, as was done in the case β > 0 in Sec. 6.

9.3. Formation of loops along the motion. Consider the motion y(1)(·) of system (1.1) from the
position(t0, x0) ∈ Y, t0 < ϑ, according to a certain strategy U ∈ Uc1 of the first player with step Δ > 0
and a certain open-loop control v(·) of the second player.

By the symbol H we denote the set of integers h ∈ 1, h∗, for each of which there exist a set F ⊂ I of
q(F ) = h elements and an instant t ∈ [t0, ϑ] such that y(1)(t) ∈ Πch(F, t) and the set of vectors b

(3)
i , i ∈ F ,

is linearly independent.
If H = ∅, then we assume that the whole interval [t0, ϑ] is a free interval of level 1.
Assume that H 	= ∅. Let h
 be the maximum among the numbers H.
Along the motion y(1)(·), we distinguish the loops related to the entrance to the sets Πch(F, t), where

q(F ) = h, h = 1, h
. Also, we define free intervals.
Let T[h] be the set of instants t ∈ [t0, ϑ] such that y(1)(t) ∈ Πch(F, t) for a certain set F with q(F ) = h,

and, moreover, let the vectors b
(3)
i , i ∈ F , be linearly independent. The above F is not necessarily unique.

Denote the collection of sets F corresponding to the instant t by {F [h](t)}.
Taking into account the definition of the number h∗, we obtain that {F [h∗](t)} is the same for any

t ∈ T[h∗].
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1. If h
 = h∗, then we set

t
[h∗]
1 := min{t : t ∈ T[h∗]}, t̂[h

∗] := max{t : t ∈ T[h∗]}.

The interval [t[h
∗]

1 , t̂[h
∗]] is called a loop of level h∗. The intervals [t0, t

[h∗]
1 ] and [t̂[h

∗], ϑ] are called free
intervals of level h∗.

If h
 < h∗, then we assume that [t0, ϑ] is a free interval of level h
 + 1.
2. Assume that the loops and the free intervals corresponding to a certain level h ∈ 2, h
 for h
 = h∗

and to a level h ∈ 2, h
 + 1 for h
 < h∗ are defined. Let Θ[h]
j := [θ[h]

j , θ
[h]
j+] be the notation of the free

interval with the number j in the through enumeration on [t0, ϑ].
Consider the free interval Θ[h]

j . Let

τ
[h−1]
j,1 := min

{
t : t ∈ T[h−1] ∩ Θ[h]

j

}
,

τ
[h−1]
j,i+1 := min

{
t : t ∈ T[h−1] ∩ [τ [h−1]

j,i + st[h−1], ϑ
[h]
j+]
}
, i = 1, 2, . . . .

The obtained set of instants τ
[h−1]
j,i is denoted by {τ [h−1]

j }.
With each instant τ

[h−1]
j,i , we associate loops of level h − 1. Choose an arbitrary F ∈ {F [h−1](t[h−1]

j,i )}.
We set

t
[h−1]
j,i := τ

[h−1]
j,i ,

t
[h−1]
j,i+ := max

{
t : y(1)(t) ∈ Πch−1(F, t), t ∈ [τ [h−1]

j,i , τ
[h−1]
j,i + st[h−1]] ∩ Θ[h]

j

}
.

Proposition 9.1. On the interval (t[h−1]
j,i+ , τ

[h−1]
j,i + st[h−1]] ∩ Θ[h]

j , there are no instants from T[h−1].

Proof. Assume the contrary. Let t̂ be an instant from the interval considered belonging to T[h−1]. By the
symbol F̂ we denote an arbitrary set in {F [h−1](t̂)}. The vectors b

(3)
i , i ∈ F̂ , are linearly independent.

First assume that among the vectors b
(3)
i , i ∈ F̂ , there is at least one vector b

(3)

î
not belonging to the

linear span of the vectors b
(3)
i , i ∈ F . Then the vectors b

(3)
i , i ∈ F̃ = F ∪ {̂i}, are linearly independent.

Taking into account the inclusion [τ [h−1]
j,i , θ

[h]
j+] ⊂ Θ[h]

j , we obtain

y(1)(τ [h−1]
j,i ) /∈ int Πch(F̃ , t).

Moreover,
y(1)(τ [h−1]

j,i ) ∈ Πch−1(F, t).

Hence, by Lemmas 3.2 and 3.3, taking into account the choice of the numbers ch−1 and st[h−1], we see
that the motion y(1)(t) on [τ [h−1]

j,i , τ
[h−1]
j,i +st[h−1]]∩Θ[h]

j cannot attain Πch−1 (̂i, t), and, therefore, the same
also on Πch−1(F̂ , t).

Now let any vector b
(3)
i , i ∈ F̂ , belong to the linear span of the vectors b

(3)
i , i ∈ F . Since each of these

two sets consists of h − 1 linearly independent vectors, it follows that Πch−1(F, t) = Πch−1(F̂ , t). Hence,
y(1)(t̂) ∈ Πch−1(F, t̂), which contradicts the definition of the instant t

[h−1]
j,i+ .

It follows from Proposition 9.1 that with each instant τ
[h−1]
j,i , we associate a unique loop of level h − 1

but not a series of loops as in Sec. 7 for β > 0.
The instant t

[h−1]
j,i = τ

[h−1]
j,i is called the instant of origin of the loop with the number i of level h− 1 on

the free interval Θ[h]
j , and the instant t

[h−1]
j,i+ is called the instant of the end of this loop.

Passing through all free intervals of level h, we enumerate (in through numbering) the loops of level
h − 1. Let {t[h−1]} be the instants of origin of the loops of level h − 1.
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9.4. Increment of the function V (2). To estimate the increment of the function V (2) along the motion
y(1)(t), we represent the interval [t0, ϑ] as an interval composed of intervals of loops of levels h = 1, h
 and
free intervals of level 1.

Let [t∗, t∗] be the interval of a certain loop of level h. Then, taking into account (9.1), we estimate the
increment Var(V (2), [t∗, t∗]) of the function V (2) as follows:

Var(V (2), [t∗, t∗]) ≤ 2λσμΔ + ch + λχ(t∗, t∗).

If [t∗, t∗] is a free interval of level 1, then by (9.2) we have

Var(V (2), [t∗, t∗]) ≤ 2λσμΔ + λχ(t∗, t∗).

Denote
sh[∗] := 2λσμΔ; sh[h] := 2λσμΔ + ch, h = 1, h
. (9.3)

Therefore, to estimate the increment of the function V (2) on the interval of a loop of level h we will use
the inequality

Var(V (2), [t∗, t∗]) ≤ sh[h] + λχ(t∗, t∗), (9.4)
and on the free interval of level 1 we will use the inequality

Var(V (2), [t∗, t∗]) ≤ sh[∗] + λχ(t∗, t∗). (9.5)

For each h = 1, h
, by the symbol a[h] we denote the number of loops of level h and by the symbol m[h]

the number of free intervals of level h on [t0, ϑ]. Let us agree that m[h�+1] := 1.
Taking into account (9.4) and (9.5), we estimate the increment of the function V (2) on [t0, ϑ] by the

inequality

Var(V (2), [t0, ϑ]) ≤
h�
∑

h=1

a[h]sh[h] + m[1]sh[∗] + λχ(t0, ϑ). (9.6)

1. Let us estimate from above the possible number of loops and free intervals.
If h
 = h∗, then

a[h�] = 1, m[h�] ≤ 2. (9.7)

In the case h
 < h∗, the following estimates hold:

a[h�] ≤ [[(ϑ − t0)/st[h�]]] + 1, m[h�] ≤ a[h�] + 1. (9.8)

Here, the double square brackets stand for the integral part.
For h ∈ 1, (h
 − 1), we have

a[h] ≤ [[(ϑ − t0)/st[h]]] + m[h+1], m[h] ≤ a[h] + m[h+1]. (9.9)

A. Let us show that for any h ∈ 1, h
, the following inequality holds:

m[h] ≤
h�−h+1∑

p=1

2(p−1)[[(ϑ − t0)/st[h+p−1]]] + 2(h�−h+1). (9.10)

If h = h
, then the above inequality holds. Assume that for h + 1, where h ∈ 1, (h
 − 1), inequality (9.10)
is proved, i.e.,

m[h+1] ≤
h�−h∑

p=1

2(p−1)[[(ϑ − t0)/st[h+p]]] + 2(h�−h).

Then using (9.7)–(9.9), we obtain

m[h] ≤ a[h] + m[h+1] ≤ [[(ϑ − t0)/st[h]]] + 2m[h+1]
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≤ [[(ϑ − t0)/st[h]]] +
h�−h∑

p=1

2p[[(ϑ − t0)/st[h+p]]] + 2(h�−h+1)

=
h�−h+1∑

p=1

2(p−1)[[(ϑ − t0)/st[h+p−1]]] + 2(h�−h+1).

Therefore, (9.10) is proved.
Taking into account that st[h] ≤ st[h+1] ≤ · · · ≤ st[h�], we deduce from inequality (9.10) that

m[h] ≤

⎛

⎝
h�−h+1∑

p=1

2(p−1)

⎞

⎠ [[(ϑ − t0)/st[h]]] + 2(h�−h+1) = (2(h�−h+1) − 1)[[(ϑ − t0)/st[h]]] + 2(h�−h+1). (9.11)

In particular, for h = 1, we have

m[1] ≤ (2(h�) − 1)[[(ϑ − t0)/st[1]]] + 2h�
. (9.12)

B. Using (9.7)–(9.9), we write the inequality

h�
∑

h=1

a[h] ≤
h�
∑

h=1

[[(ϑ − t0)/st[h]]] +
h�
∑

h=1

m[h+1]. (9.13)

Using (9.11), we obtain

h�
∑

h=1

m[h+1] =
h�
∑

h=2

m[h] + 1 ≤
h�
∑

h=2

(2(h�−h+1) − 1)[[(ϑ − t0)/st[h]]] +
h�
∑

h=2

2(h�−h+1) + 1.

Substituting the estimate for
h�∑

h=1

m[h+1] in (9.13), we obtain the inequalities

h�
∑

h=1

a[h] ≤ [[(ϑ − t0)/st[1]]] +
h�
∑

h=2

2(h�−h+1)[[(ϑ − t0)/st[h]]] +
h�
∑

h=2

2(h�−h+1) + 1

≤ [[(ϑ − t0)/st[1]]] +

⎛

⎝
h�
∑

h=2

2(h�−h+1)

⎞

⎠ [[(ϑ − t0)/st[2]]] +
h�
∑

h=2

2(h�−h+1) + 1.

Since
h�
∑

h=2

2(h�−h+1) = 2h� − 2

and st[1] ≤ st[2], it follows that

h�
∑

h=1

a[h] ≤ [[(ϑ − t0)/st[1]]] + 2h�
[[(ϑ − t0)/st[1]]] − 2[[(ϑ − t0)/st[1]]] + 2h� − 1

= (2h� − 1)[[(ϑ − t0)/st[1]]] + 2h� − 1.

Therefore,
h�
∑

h=1

a[h] ≤ (2h� − 1)[[(ϑ − t0)/st[1]]] + 2h� − 1. (9.14)

2. For brevity, denote
κ


 := (2h� − 1)[[(ϑ − t0)/st[1]]] + 2h�
.
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Then by (9.3), (9.6), (9.12), and (9.14), we obtain

Var(V (2), [t0, ϑ]) ≤ (κ
 − 1)sh[h�] + κ

sh[∗] + λχ(t0, ϑ) = (2κ


 − 1)2λσμΔ + (κ
 − 1)ch� + λχ(t0, ϑ).

The number h
 is related to the motion y(1)(·). To exclude such a dependence, we estimate h
 through
h∗ and estimate ch� through ch∗ . We have

Var(V (2), [t0, ϑ]) ≤ (2κ
∗ − 1)2λσμΔ + (κ∗ − 1)ch∗ + λχ(t0, ϑ), (9.15)

where
κ
∗ := (2h∗ − 1)[[(ϑ − t0)/st[1]]] + 2h∗

.

Using (9.15), we obtain the inequality

γ(1)(y(1)(ϑ)) ≤ V (2)(t0, x0) + (2κ
∗ − 1)2λσμΔ + (κ∗ − 1)ch∗ + λχ(t0, ϑ) + ‖γ(1) − γ(2)‖M . (9.16)

The quantity st[1] on which κ
∗ depends is determined by c1, c2, . . . , ch∗ and does not increase when

they decrease. Therefore, the second and third summands on the right-hand side tend to zero as Δ → 0,
ch∗ → 0. On the whole, estimate (9.16) is not constructive, since, in a nonconstructive way, by using ch∗ ,
the sequence ch∗−1, . . . , c2, c1 is defined.

Estimate (9.16) implies the assertion of Theorem 1 with β = 0.

10. Case of the Scalar Control of the First Player

Theorem 1 holds for the general case k ≥ 1. In the scalar case k = 1, the result can be strengthened.

10.1. Constructions arising in the scalar case. For q(F ) = k, i.e., when F = I, the formulation
of the main Lemma 2.1 becomes substantially simplified. The set H becomes empty, assumption (2.2)
becomes extra, and this is the case for the assumption on regular controls for subscripts i ∈ I \ (F ∪ H).
In estimate (2.3), the third and fourth summands on the right-hand side disappear. The formulation of
the lemma takes the following form.

Proposition 10.1. Assume that F = I and (t∗, x∗) ∈ Z, δ > 0, t∗ + δ ≤ ϑ. Let y(1∗)(·) be the motion of
system (1.1) according to admissible open-loop controls u(·) and v(·) emanating from the point x∗ at the
instant t∗. Then the following estimate holds:

V(F, t∗ + δ, y(1∗)(t∗ + δ)) ≤ V (2)(t∗, x∗) + λδ2
k∑

i=1

βiμi + λχ(t∗, t∗ + δ).

Now rewrite Proposition 2.1 for the case F = ∅ and H = ∅.

Proposition 10.2. Let (t∗, x∗) ∈ Z, t∗ ∈ (t∗, ϑ]. Let 0 ≤ ω ≤ t∗ − t∗, and along the motion y(1∗)(·),
emanating from the point x∗ at the instant t∗, for any i ∈ I, let either y(1∗)(t) ∈ Π+(i, t) on the interval
[t∗ + ω, t∗], and, moreover, let ui(t) = μi, or let y(1∗)(t) ∈ Π−(i, t), and, moreover, let ui(t) = −μi. Then
the following estimate holds for any t ∈ [t∗, t∗]:

V (2)(t, y(1∗)(t)) ≤ V (2)(t∗, x∗) + 2λω
k∑

i=1

σiμi + λχ(t∗, t).

We will use Propositions 10.1 and 10.2 in the case of scalar control of the first player, i.e., for k = 1.
Therefore, we assume that the control action of the first player is subjected to the constraint |u| ≤ μ and

the matrices B(1)(t) and B(2)(t) are columns of dimension n. For each t, we deal with a single switching
surface; omitting the symbol F , we will denote it by Π(t). Analogously, we will omit the symbol F in
the notation of an r-neighborhood of the surface Π(t) and also in that of parts of the space R

n that are
determined by these sets.

In the scalar case, Condition 2 holds automatically. There is no necessity to consider c-neighborhoods
of switching surfaces, and Lemma 3.3 becomes extra. Also, we may not introduce the smallness parameter
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ξ. There arises a possibility of obtaining an explicit estimate for the result, which is guaranteed to the
first player by the strategy based on the switching surfaces Π(t) being applied with an arbitrary step
Δ > 0 of the discrete control scheme.

10.2. Proof of Theorem 2. Fix a number r ≥ 0. Consider the motion y(1)(·) of system (1.1) from
the position (t0, x0) ∈ Y, t0 < ϑ, according to a certain strategy U ∈ Ur of the first player with a step Δ
of the discrete control scheme and certain v(·) ∈ K(1).

1. Let β > 0. We set

st :=

√
2σμΔ + r

βμ
. (10.1)

A. Along the motion y(1)(·), we distinguish loops related to the entrance to the sets Πr(t). Also, we
define free intervals.

We set
t1 := min

{
t : y(1)(t) ∈ Πr(t), t ∈ [t0, ϑ]

}
.

The instant t1 is called the instant of origin of the first loop. Further, we distinguish the instant t1+ of
the end of the first loop:

t1+ := max
{
t : y(1)(t) ∈ Πr(t), t ∈ [t1, t1 + st] ∩ [t0, ϑ]

}
.

In particular, the instant t1+ can coincide with t1.
As the instant t2 of the origin of the first loop, we take the instant

t2 := min
{
t : y(1)(t) ∈ Πr(t), t ∈ [t1 + st, ϑ]

}
.

Then we distinguish the instant t2+ of the end of the second loop:

t2+ := max
{
t : y(1)(t) ∈ Πr(t), t ∈ [t2, t2 + st] ∩ [t0, ϑ]

}
.

Continuing this process, we obtain the set of loops on [t0, ϑ].
From [t0, ϑ], we remove the interiors of intervals of the constructed loops. We obtain an ordered set of

closed intervals. Each of them is called a free interval. A free interval can degenerate, i.e., it can be a
singleton.

If there are no loops on [t0, ϑ], then we assume that [t0, ϑ] is a free interval.
B. Let [ρ, η] be a certain free interval. We show that the increment of the function V (2) on it is described

by the inequality
VarD(V (2), [ρ, η]) ≤ 2λσμΔ + λχ(ρ, η). (10.2)

Here, the subscript D stresses the property that the variation of the function V (2) is calculated on the
free interval.

Along the motion y(1)(·), a certain control u(·) is realized. The value of u(t) is said to be “regular” if
u(t) = μ (u(t) = −μ) for y(1)(t) ∈ Π+(t) (y(1)(t) ∈ Π−(t)).

On the interior of a free interval, the point y(1)(t) is outside the set Πr(t) and, therefore, does not attain
the set Π(t). Therefore, for Δ ≤ η − ρ, the control u(t) is regular on [ρ + Δ, η) and can be arbitrary only
on [ρ, ρ + Δ). Estimate (10.2) directly follows from Proposition 10.2 for ω = Δ, t∗ = ρ, and t∗ = η.

If Δ > η − ρ, then we apply Proposition 10.2 for ω = η − ρ, t∗ = ρ, and t∗ = η. Once again, we obtain
estimate (10.2).

C. We say that [ρ, η] is an interval of the form E if it is composed of a certain loop [ti, ti+] and a free
interval adjacent to it to the right. An interval [ρ, η] of the form E satisfying the additional condition
ρ + st ≤ η is called an interval of the form E .

Let us estimate the increment of the function V (2) along the motion y(1)(·) on the interval of the form E.
Consider the interval of the loop [ti, ti+]. Applying Proposition 10.1 for δ = ti+ − ti, we have

V(ti+, y(1)(ti+)) ≤ V (2)(ti, y(1)(ti)) + λβμ(ti+ − ti)2 + λχ(ti, ti+).
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Since ti+ − ti ≤ st, it follows that

V(ti+, y(1)(ti+)) ≤ V (2)(ti, y(1)(ti)) + λβμst · (ti+ − ti) + λχ(ti, ti+).

Taking into account the inequality

V (2)(ti+, y(1)(ti+)) ≤ V(ti+, y(1)(ti+)) + λr,

we arrive at the relation

Var(V (2), [ti, ti+]) ≤ λβμst · (ti+ − ti) + λr + λχ(ti, ti+). (10.3)

On the free interval [ti+, η], by (10.2) we have

VarD(V (2), [ti+, η]) ≤ 2λσμΔ + λχ(ti+, η). (10.4)

Combining (10.3) and (10.4) and taking into account the inequality ti+ − ti ≤ η − ρ, we obtain

VarE(V (2), [ρ, η]) ≤ λβμst · (η − ρ) + 2λσμΔ + λr + λχ(ρ, η). (10.5)

The subscript E stresses the property that the calculation of the increment of the function V (2) is per-
formed on the interval of the form E.

We now pass to the estimation of the increment of the function V (2) along the motion y(1)(·) on an
interval of the form E . Since η − ρ ≥ st in this case, (10.1) implies the inequality

2λσμΔ + λr ≤ λβμst · (η − ρ).

Taking into account (10.5), we obtain

VarE(V (2), [ρ, η]) ≤ 2λβμst · (η − ρ) + λχ(ρ, η). (10.6)

D. Consider the interval [t0, ϑ]. Represent it as an interval composed of the first free interval [t0, t#],
finitely many intervals of the form E following each other from the instant t# up to a certain instant t♦
(their total interval is [t#, t♦]), and the remaining interval [t♦, ϑ] of the form E. Sequentially applying
estimates (10.2), (10.6), and (10.5), we have

Var(V (2), [t0, ϑ]) = VarD(V (2), [t0, t#]) + Var(V (2), [t#, t♦])

+ VarE(V (2), [t♦, ϑ]) ≤ 2λσμΔ + 2λβμst · (t♦ − t#) + λβμst · (ϑ − t♦) + 2λσμΔ + λr + λχ(t0, ϑ)

≤ 2λβμst · (ϑ − t0) + 4λσμΔ + λr + λχ(t0, ϑ).

Substituting st, by formula (10.1) we obtain

Var(V (2), [t0, ϑ]) ≤ 2λ
√

(2σμΔ + r)βμ(ϑ − t0) + 4λσμΔ + λr + λχ(t0, ϑ). (10.7)

2. Let β = 0. We set

t1 := min
{
t : y(1)(t) ∈ Πr(t), t ∈ [t0, ϑ]

}
, t̂ := max

{
t : y(1)(t) ∈ Πr(t), t ∈ [t0, ϑ]

}
.

We have
y(1)(t) /∈ Πr(t), t ∈ [t0, t1) ∪ (t̂, ϑ].

For the intervals [t0, t1] and [t̂, ϑ], using Proposition 10.2 (as in deducing inequality (10.2)), we obtain

Var(V (2), [t0, t1]) ≤ 2λσμΔ + λχ(t0, t1), (10.8)

Var(V (2), [t̂, ϑ]) ≤ 2λσμΔ + λχ(t̂, ϑ). (10.9)

For the interval [t1, t̂], using Proposition 10.1, for β = 0 we have

V(t̂, y(1)(t̂)) ≤ V (2)(t1, y(1)(t1)) + λχ(t1, t̂),

and, therefore, taking into account the inequality

V (2)(t̂, y(1)(t̂)) ≤ V(t̂, y(1)(t̂)) + λr,
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we arrive at the estimate
Var(V (2), [t1, t̂]) ≤ λr + λχ(t1, t̂). (10.10)

Combining (10.8)–(10.10), we obtain

Var(V (2), [t0, ϑ]) ≤ 4λσμΔ + λr + λχ(t0, ϑ). (10.11)

3. Using (10.7) in the case β > 0 and (10.11) in the case β = 0, we obtain the estimate

V (2)(ϑ, y(1)(ϑ)) ≤ V (2)(t0, x0) + 2λ
√

(2σμΔ + r)βμ(ϑ − t0) + 4λσμΔ + λr + λχ(t0, ϑ). (10.12)

Since
γ(2)(y(1)(ϑ)) = V (2)(ϑ, y(1)(ϑ)), γ(1)(y(1)(ϑ)) ≤ γ(2)(y(1)(ϑ)) + ‖γ(1) − γ(2)‖M

and the right-hand side of (10.12) is independent of the chosen v(·) ∈ K(1), it follows that

Γ(1)(t0, x0, U, Δ) ≤ V (2)(t0, x0) + 2λ
√

(2σμΔ + r)βμ(ϑ − t0)

+4λσμΔ + λr + λχ(t0, ϑ) + ‖γ(1) − γ(2)‖M,

which completes the proof of Theorem 2. �

11. Tests of Numerical Construction of Switching Surfaces in Differential Games

In this paper, we do not discuss algorithms for numerically constructing switching surfaces. We restrict
ourselves to a brief description of publications in which the results of computer modeling with the use of
switching surfaces are presented.

The simplest case is the case n = 2, i.e., when the values of the cost function at the instant of termination
of the game are determined by certain two coordinates of the state vector.

For this case, at the Institute of Mathematics and Mechanics of the Ural Department of the Russian
Academy of Sciences, in the early 1980s, effective algorithms (see [1, 3, 11, 16, 18, 21, 35]) for constructing
t-sections of the level sets of the value function were elaborated. The constructions are performed in the
framework of the approximating game (1.4) on a given grid {tj} of instants of time and on a certain grid
{cp} of values of the value function. Each section W

(2)
cp (tj) is a convex polygon on the plane. The passage

from the constructed section W
(2)
cp (tj) to the section W

(2)
cp (tj−1), tj−1 < tj , is performed by using a special

backward procedure that uses the convexification operation of a positively homogeneous piecewise-linear
function in the space R

2 or the operation of intersection of broken lines on the plane, which is equivalent
to it.

An easy processing (see [3, 4, 9, 10, 18]) of polygons W
(2)
cp (tj), c ∈ {cp}, for each component ui, i = 1, k,

of the control action u of the first player yields the switching lines corresponding to the instant tj . The
switching lines calculated on the grid {tj} determine the control method with respect to the component
ui. The sets of switching lines are stored in the memory and are used in the discrete control scheme.

In [3–7, 12–15, 17–19, 25, 26, 38], the problem on the landing of an aircraft in wind shear is consid-
ered. The process of landing up to the flight overshooting the end of the runway is studied. Under the
linearization of nonlinear dynamical equations with respect to the nominal motion along the rectilinear
trajectory of descent, we obtain a linear system breaking up into two subsystems; one of them contains
state variables and control actions that influence the vertical deviation from the nominal (subsystem of
longitudinal channel), and the other contains those that influence the lateral deviation (subsystem of
lateral channel). Respectively, two auxiliary differential games with a fixed instant of termination are
considered. In the first of them, the cost function depends on the vertical deviation at the instant of
termination and on the speed of its variation. The control actions are the deviation of the elevator and
the variation of the traction force. In the second game, the cost is determined by the lateral deviation
and its speed. The control action are the deviations of ailerons and direction rudder.

For each of the auxiliary linear differential games and for a given grid of instants of time, the switching
lines defining the control action of the first player close to optimal (in the framework of a linear model)
are calculated. The testing was performed within the framework of the initial nonlinear system. Different
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variants of wind disturbance are applied: the formation of the disturbance by the feedback principle on the
basis of solution of auxiliary linear differential games [6, 12, 14, 15], models of wind microbursts [22, 33,
51], and the formation of the disturbance by using a random number generator. The results of modeling
of the landing process are compared with those given by the traditional control methods.

The control method using sets of switching lines was also tested by examining model landing and
launching problems, which were proposed by Miele and his collaborators in [32–34]. The results of the
study are contained in [15, 23, 43–45]. For the launching problem, a comparison with the results of
G. Leitmann and his collaborators presented in [20, 31], in which the control is constructed by using
appropriate Lyapunov functions, was carried out.

In [8], the problem of the take-off run of an aircraft along a runway under a wind perturbation is
considered. The control method studied is based on the construction of switching lines.

In [39, 40], the problem of transportation of a load with movable suspension point is considered in the
game-theoretic statement. The switching lines defining the optimal control method are constructed.

A software package for constructing switching surfaces in the case n = 3 is described in [48].
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