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1. Introduction

Speaking about differential games (DGs) we shall bear in mind
the aircraft landing problem in the presence of wind disturbance as
an example. The landing begins from the hight of 400 m and continues
120 sec approximately.

It is necessary to control aircraft so that its deviation from
the nominal trajectory would not be too much and in +the moment of
crossing the runway (RW) threshold parameters of motion would be per-
missible. We consider that wind disturbance, which interferes control
process, vrises from wind microburst. The microburst is caused by
falling mass of air, which hits +the ground surface and gives
vortex. When aircraft crosses the microburst =zone the value and
direction of the wind change sharply along the aircraft motion.

Extension and configuration of the microburst and distribution of
wind field inside could be regarded as known wunder too idealistic
consideration only. More realistic we can hope to have information
only about deviations of the uwind value and its direction from sone
middle valuss.

So we meet some mathematical task, formulated as a differetial
gane (DG): equations of aircraft dynamics and restrictions of i{ts
control parameters are given, vestrictions wupon the disturbance
parameters are known also. The question arises about an optimization
of guaranteed result.

Nowadays the DGs +theory is the developed mathematical dis-
cipline [1-8B].

Essential results have been achieved, particularly, by mathe-
maticians in Sverdlovsk: conception of positional DGs was developed,
universal ways for construction of optimal strategies uwere suggested,
and now numerical methods and algorithms are devising. These are sone
key-words, typical for Sverdlovsk mathematical school on DG: discrete
scheme of control, maximal stable bridge, extremal strategy. Hain
results are stated in monographs [4,7,8,91.
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Devised in Sverdlovsk numerical methods concern both linear and
nonlinear problems. In this paper we are dealing with some methods,
namely those, which can be applied for solving the aircraft landing
problem. We shall suppose that aircraft dynamics equations are
linearized respectively the nominal motion and so DG is linear. This
linear DG can be considered as an auxiliary game for +the original
nonlinear system. Closed-loop control methods (strategies) found from

solving linear DG are applied then to the original systen.

2. Linear DG with fixed terminal time
The standard form of linear DG is follouwing

X = Aft)x + Bltlu + C(t)v (2. 1)

x <R, wueP, veq T, @x(TH .

Here X is the state vector, u is the control parameter of the
first playsr, v is one of the second player. Compact sets P, Q
restrict controls of players.

The terminal time T of DG is considered to be fixed. The
quality of process is evaluated by the convex payoff function ¢
which calculated at the terminal moment.

Very often one passes [7,9] from the game (2.1) to the equivalent

DG of the form

y = D(tlu + E(tlv
D(t) = X(T,t)B{t) , E(t) = X(T,t)C(t) (2.2)
weP, veQ, T, @y(T) .

The pass is realised by transformation yi(t) = X(T,tix(t) ,
where X(T,t) is the Cauchy matrix, corresponding to the matrix A
of system (2.1). The advantage of DG (2.2) over DG (2.1) is that the
state variable is absent in the right side, simplifying writing. More
than that, in the case, when payoff function () depends upon some
m coordinates of the state vektor only, we can reduce dimension of
the equivalent DG and make it equal m . For this it is necessary to
use m corresponding rows of Cauchy matrix in performing pass from

variable x to variable ¥y .

3. Switch surfaces

In the Institute of Mathematics and Mechanics of the Ural Branch

of the USSR Academy of ©Sciences effective methods and algorithns
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have been devised for solving linear DGs with (fixed terminal
noment and convex payoff function, which deponds upon two, three and
more coordinates of the state vector.

The numerical procedures are founded on construction in coordi-
nates of the equivalent DG (2.2) of sections of level sets for
DG value function I . Every section corresponds to some definite
moment on the time axis. Giving number ¢ , we find corresponding
level set

W T) = {y « R': Qly) Sc

cf payoff function () , and moving contraward in time f{ron
terminal moment T , we construct sections wé(ti) (Fig.1) of level
set of wvalue function I , wusing chosen net for calculation.

Contraward constructions in DG +theory ascend to works of
R.Bellman, R.Isaacs, W.Fleming, L.S.Pontryagin, B.N.Pshenichnii. In
the case of linear DGs with fixed terminal time and convex
payoff function, +the main difficulty to perform pass from the
current section W&(ti) { constructed for moment ti) to the next
section wétt1+¢) is connected with the procsdure of convexing
for positively-homogeneous function. Complexity of this procedure
grous essentially with increasing of dimension m . There is
specifical facilitation, so as Dbefore Dbeginning the convexity
procedure we have information about place of violation of local
convexity. Such specifics allowes to create very fast algorithms
for contraward constructions.

Dealing with level sets of value function, we can construct
optimal strategies both for the first and the second players. Host
clearly it appears in the case when control parameter of the first
playsr or +the second player is scalar.

Suppose, that control parameter of +the first player is
scalar, nanely J utwy | = K . Then D) is a vsctor with
dimension m . For every 1 we find in space rE the set of alil
points s0 that for every point there is a vector fron vectors of the
subdifferential of the value function y = I(t,y) s, uwhich gives
zero scalar product with vector D(t) . This =set generates “"the
surface” , which divides the space R® into two parts. In the pars,
uhsre the vector D(t) is directed, the optimal control parameter of
the first player has the valus -} in the moment t
other side from the surface the optimal value is ik

y ©on the

. Just upon the

Suitch surface one can take arbitrary values from the segnent

[—p, B I . This way of the first player control was grounded in
10,113 . 1%t 1s =table in respect to errors of numerical construc-
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tion of the switch surfaces. When we use the discrete scheme of
control, the switch surfaces are to be constructed before upon the
given net of the time moments.

The most simple constructions are carried out in the case n = 2.
Here we have suitch lines. During calculation these lines are
maintained from segments (Fig.2). Numerical constructed switch lines
for control law aircraft landing problem are shown in Fig.3, wherse
T=T-t.

Analogically the optimal strategy of the second player is const-
ructed by means of the switch surfaces in the scalar case |v(t)| = Y.
Here the vector E(t} is using. But in contrast toc the first
player, the optimal strategy of the second player is not stable [123.

Let now the control of the first player ( or the secont player 1}

is a vector u (v ) , which components uj { vy ) are res-—
tricted by independent conditions | ug | < Byoo€ v 1= vy, .
In this case it is possible to construct oun switch surface for every
component u, ( vy ) , using j (k) column of matrix D(t)
( E(t) ) . S0 we shall have the set of switch surfaces for every time
moment t . Method of closed-loop control, which uses such sets,
gives an optimal result under special suggestions.

In conglusion of this section, note we can use contraward proce-~
dures for immediate constructing of value function epigraph. For this
¥e use contraward method for definite corresponding DG in space wuwith
dimension increased by 1. In Fig.4 we show graph of value function
y » I'" t,y) in the model DG

X = X_+V
2

1
X,=u, Jul€ 1, |v] €1
with terminal moment T and payoff function @tx) = max¢|x |, |x,|?

for the moment t=T-2 im equivalent coordinates y{(t) = X(T,t)x(t).

4. Alrcraft landing problem

The aircraft motion during landing is described by a differen-
tial equations system of 22-th order. The first 12 equations are
correspond to trajectory and angle motion. The last 10 ones imitate
the inertionality of control devices and inertial character of wind
velocity along the motion. The control factors are: deviations of
the elevator,the rudder,the ailerones and change of thrust forcs.
The disturbance vector consist of three wind components. The
linearization of the system with respect +to the nominal motion
gives linear <controllable system, which desintegrates into tuo
subsystens of vertical (longitudinal) and lateral motions.
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For each of the subsystems we consider an auxiliary differen-
tial game with fixed terminal time T and convex payoff function
depending on two state vector coordinates at the moment T . Solving
the auxiliary problems on computer, we find optimal strategies
for control parameters which are realized by means of switch lines.

Simulating original nonlinear system motions,we suppose that the
wind disturbance is coused by the aircraft flight through the micro-
burst zone. The microburst model we used has been taken from the
paper [13].

Consider tuwo methods of control. The method 11 uses accepted
nowadays autopilot algorithms. These algoritms are founded on the
linear theory of automatic control. In the method Iz control factors
are constructed by means of switch lines obtained from the auxiliary
differential games.

Simulation results for the control methods Ix.I2 are shown in
Fig 5. We give graphs of vertical Ay and lateral Az deviations
from the nominal motion and also realizations of wind velocity
deviations AHX .AUy ,AHZ. It can be seen that the results for the
minimax method I2 are better than for the traditional method Ir

In conclusion we emphasize that computation of minimax control
method demands neither accurate .information about the disposition of
external wind disturbance zone nor any information about the wind
velocity field in that zone. It is enough to describe amplitude of
wind velocity variation approximately . This is +the principle
difference of the approach, based on the DG theory, from the methods,
given in [14, 151, where such information is essential.

Applications of DG theory to the landing problem have been
considered in [12,16-20].
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