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1 .  I n t r o d u c t i o n  

S p e a k i n g  a b o u t  d i f f e r e n t i a l  g a m e s  (DGs}  we s h a l l  b e a r  i n  m i n d  

t h e  a i r c r a f t  l a n d i n g  p r o b l e m  i n  t h e  p r e s e n c e  o f  w i n d  d i s t u r b a n c e  a s  

a n  e x a m p l e .  T h e  l a n d i n g  b e g i n s  f r o m  t h e  h i g h t  o f  4 0 0  m a n d  c o n t i n u e s  

1 2 0  s e c  a p p r o x i m a t e l y .  

I t  i s  n e c e s s a r y  t o  c o n t r o l  a i r c r a f t  s o  t h a t  i t s  d e v i a t i o n  f r o m  

t h e  n o m i n a l  t r a j e c t o r y  w o u l d  n o t  b e  t o o  m u c h  a n d  i n  t h e  m o m e n t  o f  

crossing the runway (EW} threshold parameters of motion would be per- 

missible. Ne consider that wind disturbance, which interferes control 

process, rises from wind microburst. The mioroburst is caused by 

falling mass o f  air, which hits the ground surface and gives 

vor~ex. When aircraft crosses the microburst zone the value and 

direction of the wind change sharply along the aircraft motion. 

Extension and configuration o f  the mlcroburst and distribution o f  

wind field inside could be regarded as known under too idealistic 

consideration only. More realistic we can hope to have information 

only about deviations of the wind value and its direction from some 

middle values. 

So we meet some mathematical task, formulated as a differetial 

game (DG): equations of aircraft dynamics and restrictions of its 

control parameters are given, restrictions upon the disturbance 

parameters are known also. The question arises about an optimization 

of guaranteed result. 

Nowadays the DGs theory is the developed mathematical dis- 

cipline [ 1 - 8 } .  

Essential results have been achieved, particularly, by mathe- 

maticlans in Sverdlovsk: conception of positional DGs was developed, 

universal ways for constructlos of optimal strategies were suggested, 

and now numerical methods and algorithms are devising. These are some 

key-words, typical for Sverdlovsk mathematical school on DG: discrete 

scheme of control, maximal stable bridge, extremal strategy. Main 

results are stated i S  monographs [4,7,8,93. 
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Devised in Sverdlovsk numerical methods concern both linear and 

nonlinear problems. In this paper we are dealing with some methods, 

namely those, which can be applied for solving the aircraft landing 

problem. We shall suppose ~hat aircraft dynamics equations are 

linearized respectively the nominal motion and so DG i s  linear. This 

linear DG can be considered as an auxiliary game for the original 

nonlinear system. Closed-loop control methods (strategies) found from 

solving linear DG are applied then to the original system. 

R. Linear DG with fixed termlrL~l tlme 

The standard form of linear DG is following 

x = A(~)x + B(t)u + C(t)v 

x e R n, u e P, v e Q, T, ~(x(T)} 

(2 .  1) 

Here x is the state vector, u is the control parameter of the 

first player, v is one of the second player. Compact sets F , Q 

restrict controls of players. 

The terminal time T of DG is considered ~o be fixed. The 

quality of process is evaluated by the convex payoff function ~ , 

which calculated at the terminal moment. 

Very often one passes [7,9] from the game (2.1) to the equivalent 

DG of the form 

y = D(t)u + E(%)v 

D{t) = N(T,~)BCt) , 

u e P, v e O, T, 

E(~) = X(T,t)C(~) 

~{y(T)) 

( 2 . 2 }  

The pass is realised by transformation y(t) : X(T,t)x(t) , 

where ×(T,t) is the Cauchy matrix, corresponding to the matrix A 

of system (2.1}. The advantage of DG (2.2) over DG (2.1) is that the 

s~ate variable is absent in the right side, simplifying writing. More 

than that, in the case, when payoff function ~ depends upon some 

m coordinates of the state vektor only, we can reduce dimension of 

the equivalent DG and make it equal m . For this it is necessary to 

use m corresponding rows of Cauchy matrix in performing pass from 

variable x to variable y . 

3. Switch surfaces 

In the Institute of Mathematics and Mechanics of the Ural Branch 

of the USSR Academy of Sciences effective methods and algorithms 
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have been devised for solving linear DGs with fixed terminal 

moment ana convex payoff function, which depends upon two, three and 

more coordinates of the state vector. 

The numerical procedures are founded on construction i n  ooordl- 

n a r e s  o f  ~he  e q u i v a l e n t  DG ( 2 . 2 )  o f  s e c t i o n s  o f  l e v e l  s e t s  f o r  

DG value function F . Every section corresponds to some definite 

moment on the time axis. Giving number c , we find correspondlng 

level set 

~c(T) = £ y E Era: ~(y) ~ c ) 

of payoff function ~ , and moving contraward in time from 

terminal moment T , we construct sections Wc(t i ) (Fig. l) of level 

set of value function F , using chosen net for calculation. 

Contraward cons%ructlons in DG theory ascend to works of 

R.Bellman, R. Isaacs, W.Fleming, L.S. Pontryagin, B.N.Pshenichnii. In 

the case of linear DGs with fixed terminal time and convex 

payoff function, the main difficulty to perform pass from the 

current section Wc(t i) ( constructed for moment t.) tO the next 

section ~c{ti~ s) is connected with the procedure of convexing 

for positlvely-homogeneous function. Complexity of this procedure 

grows essentially with increasing of dimension m There is 

specifical facilitation, so as before beginning the convexity 

procedure we have information about place of violation of local 

convexity. Such specifics allowes to create very fast algorithms 

for contraward constructions. 

Dealing with level sets of value function, we can construct 

optimal strategies both for the f i r s t  and the second players. Most 

clearly it appears in the case when control parameter of the first 

player or the second player is ~calar. 

Suppose, that control parameter of the first player is 

scalar, namely [ u(t) [ ~ ~ . Then  D(t) is a vector w i t h  

dimension m . For every t we find in space R m the set of all 

points so that for every point there is a vector from vectors of the 

subdifferential of the value function y ~ F(%,y) , which gives 

zero scalar product with vector D(%) . This set generates "the 

surface" , which divides the space E m into two parts. In the par%, 

where the vector D(~) is directed, the optimal control parameter of 

the first player has the value - ~  in the moment t , on the 

other side from the surface the optimal value is +~ • Jus~ upon the 

switch surface one can take arbitrary values from the segmen~ 

[-~, ~ ] • This way of the first player control was grounded in 

[IO, 113 . It is s~able in respec~ to errors of numerical construc- 



229  

t i o n  o f  t h e  s w i t c h  s u r f a c e s .  When we u s e  t h e  d i s c r e t e  s c h e m e  o f  

c o n t r o l ,  t h e  s w i t c h  s u r f a c e s  a r e  t o  be  c o n s t r u c t e d  b e f o r e  u p o n  t h e  

given net of t h e  time moments. 

The most simple constructions are carried out in the case m = 2. 

H e r e  we h a v e  s w i t c h  l i n e s .  D u r i n g  c a l c u l a t i o n  t h e s e  l i n e s  a r e  

maintained from segments (Fig. 2}. Numerical constructed switch lines 

for control law aircraft landing problem are shown in Fig.3, where 

~ = T - t .  

Analogically the optimal strategy of the second player is const- 

ructed by means of the switch surfaces in the scalar case Iv(t) I ~ ~. 

Here the vector E(t) is using. But in contrast to the first 

player, the optimal strategy of the second player is not stable [123. 

Let now the control of the first player ( or the secont player ) 

is a vector u ( v } , which components u. ( v k } are res- 
J 

tricted by independent conditions I uj I ~ ~j { I v k I ~ ~k )" 

In this case it is possible to construct own switch surface for every 

component u. ( v k ) , using j ( k ) column of matrix D{t) 
J 

(E(t) ) . So we shall have the set of switch surfaces for every time 

moment t . Method of closed-loop control, which uses such sets, 

gives an optimal result under special suggestions. 

I n  conclusion of this section, note we can use contrauard proce- 

dures for immediate constructing of value function epigraph. For this 

we use contraward method for definite corresponding DG in space with 

dimension increased by i. In Fig.4 we show graph of value function 

y ~ r(t,y) in the model DG 

x = x +v 
I z 

x = = u  , l u l ~ l  , Iv I ~ 1 

with terminal moment T and payoff function ~(x) = max{[xsl,~x=[) 

for the moment t=T-2 in equivalent coordinates y(t) = N(T,t)x(t). 

4. Aircraft landing problem 

The aircraft motion during landing is described by a dlfferen- 

~ial equations system of 22-th order. The first 12 equations are 

correspond to trajectory and angle motion. The last 10 ones imitate 

~he inertionality of control devices and inertial character of wind 

velocity along the motion. The control factors are: deviations of 

the elevator,the rudder,the ailerones and change of thrust force. 

The disturbance vector consist o f  three wind components. The 

llnearization of the system with respect to the nominal motion 

gives linear controllable system, whioh desintegrates into two 

subsystems of vertical (longitudinal) and lateral motions. 



230 

Y, 

Ftg.~.M~xim~l st:able bri~e 

Y, 

Fl~.2.Switch l i ne  cona~ructlon 

~c~ 

9~ 

Fig.~,~wltch lines 



231 

5 

2 

side view 

upper view 

Fig. ~ .Value function 



232 

° ~Ay, ~ I 

o T 
,el 

N 

o 

g l  

! 

41, nl 

...... O0 q O0 

I Fru S6E -4 

X,D% 
8~00 

Fig.5. Landing simulation result.Micr0burst 

centre coordinaSss: DX=3OdO m,DZ=1500 m. 



233 

For each of the subsystems we consider an auxiliary differen- 

tlal game with fixed terminal time T and convex payoff function 

depending on two state vector coordinates at the moment T . Solving 

the auxiliary problems on computer, we find optimal strategies 

for control parameters which are realized by means of switch lines. 

Simulating original nonlinear system motlons,we suppose that the 

wind disturbance is coused by the aircraft flight through the micro- 

burst zone. The mioroburst model we used has been taken from the 

p a p e r  £13]. 

Consider two methods of control. The method I uses accepted 

nowadays autopilot algorithms. These algorltms are founded on the 

linear theory of automatic control. In the method I control factors 2 

are constructed by means of switch lines obtained from the auxiliary 

differential games. 

Simulation results for the control methods I,,I z are shown in 

Fig 5. We give graphs of vertical Ay and lateral ~z deviations 

from the nominal motion and also realizations of wind velocity 

deviations AW x ,ANy ,AN z. It can be seen that the results for the 

minimax method I are better than for the traditional method I . 
2 L 

In conclusion we emphasize that computation of minimax control 

method demands neither accurate information about the disposition of 

external wind disturbance zone nor any information about the wind 

velocity field in that zone. It is enough to describe amplitude of 

wind velocity variation approximately This is the principle 

difference of the approach, based on the DG theory, from the methods, 

given in [14,15], where such information is essential. 

Applications of DG theory to the landing problem have been 

considered in [12,18-20~. 
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